K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8

Bài 2:

Gọi vận tốc lúc đi là \(v\) (km/h), vận tốc lúc về là \(1,2 v\).
Quãng đường mỗi lượt là 120 km.

– Thời gian đi: \(\frac{120}{v}\)
– Thời gian về: \(\frac{120}{1,2 v} = \frac{100}{v}\)

Tổng thời gian đi và về bằng 4,4 giờ nên:

\(\frac{120}{v}+\frac{100}{v}=4,4\Rightarrow\frac{220}{v}=4,4\Rightarrow v=\frac{220}{4,4}=50(\text{km}/\text{h})\)

=> Vậy vận tốc lúc đi là 50 km/h, vận tốc lúc về là 60 km/h.

Bài 1b:

\(\frac{2}{3 x - 1} + \frac{1}{x} = \frac{4}{x \left(\right. 3 x - 1 \left.\right)} (Đ\text{KX}Đ:\&\text{nbsp}; x \neq 0 , \textrm{ }\textrm{ } 3 x \neq 1 )\)

Quy đồng:

\(\frac{2 x + \left(\right. 3 x - 1 \left.\right)}{x \left(\right. 3 x - 1 \left.\right)} = \frac{4}{x \left(\right. 3 x - 1 \left.\right)} \Rightarrow \frac{5 x - 1}{x \left(\right. 3 x - 1 \left.\right)} = \frac{4}{x \left(\right. 3 x - 1 \left.\right)} \Rightarrow 5 x - 1 = 4 \Rightarrow 5 x = 5 \Rightarrow x = 1\)

Kiểm tra ĐKXĐ: \(x = 1\) thỏa mãn.

=> Vậy nghiệm của phương trình là \(x = 1\).

15 tháng 8

tukgkdu

tungtungtungsahur




Bài 4:

a: ΔCAB vuông tại C

=>\(\hat{CAB}+\hat{CBA}=90^0\)

=>\(\hat{CBA}=90^0-70^0=20^0\)

Xét ΔCBA vuông tại C có \(\sin CBA=\frac{CA}{AB}\)

=>\(CA=AB\cdot\sin CBA=10\cdot\sin20\) ≃3,4(dm)

ΔCAB vuông tại C

=>\(CA^2+CB^2=AB^2\)

=>\(CB^2=AB^2-CA^2\)

=>\(CB=\sqrt{AB^2-AC^2}\) ≃9,4(dm)

b: Xét ΔABC vuông tại C có \(cosA=\frac{CA}{AB}\)

Xét ΔCHA vuông tại H có \(cosA=\frac{AH}{AC}\)

Xét ΔCHB vuông tại H có \(\sin B=\frac{CH}{CB}\)

Xét ΔCAB vuông tại C có \(\sin B=\frac{AC}{AB}\)

\(\sin B\cdot cosA=\frac{AC}{AB}\cdot\frac{AH}{AC}=\frac{AH}{AB}\)

Bài 5:

Xét ΔMAB có \(\hat{MBH}\) là góc ngoài tại đỉnh B

nên \(\hat{MBH}=\hat{A}+\hat{BMA}\)

=>\(\hat{BMA}=39^0-18^0=21^0\)

Xét ΔMAB có \(\frac{AB}{\sin AMB}=\frac{MB}{\sin A}\)

=>\(\frac{MB}{\sin18}=\frac{80}{\sin21}\)

=>\(MB=80\cdot\frac{\sin18}{\sin21}\) ≃69(m)

Xét ΔMHB vuông tại H có \(\sin HBM=\frac{HM}{MB}\)

=>\(HM=MB\cdot\sin HBM\) ≃69*sin39≃43,4(m)

=>Chiều cao của ngọn hải đăng là khoảng 43,4 mét

15 tháng 8

em cảm ơn a nhiều ạ

DD
20 tháng 8 2021

\(\left(d\right):\frac{x}{a}+\frac{y}{b}=1\)\(\left(1\right)\)

Thế \(x=a,y=0\)vào phương trình \(\left(1\right)\)thỏa mãn nên \(A\left(a,0\right)\)thuộc \(\left(d\right)\).

Thế \(x=0,y=b\)vào phương trình \(\left(1\right)\)thỏa mãn nên \(B\left(0,b\right)\)thuộc \(\left(d\right)\).

Do đó ta có đpcm. 

Bài 2: Để hệ có nghiệm duy nhất thì \(\frac{1}{a}<>\frac{a}{1}\)

=>\(a^2<>1\)

=>a∉{1;-1](1)

\(\begin{cases}ax+y=3a\\ x+ay=2a+1\end{cases}\Rightarrow\begin{cases}y=3a-ax\\ x+a\left(3a-ax\right)=2a+1\end{cases}\)

=>\(\begin{cases}y=3a-a\cdot x\\ x+3a^2-a^2\cdot x=2a+1\end{cases}\Rightarrow\begin{cases}y=3a-ax\\ x\left(1-a^2\right)=2a+1-3a^2\end{cases}\)

=>\(\begin{cases}x=\frac{-3a^2+2a+1}{1-a^2}=\frac{3a^2-2a-1}{a^2-1}=\frac{\left(a-1\right)\left(3a+1\right)}{\left(a-1\right)\left(a+1\right)}=\frac{3a+1}{a+1}\\ y=3a-a\cdot\frac{3a+1}{a+1}=\frac{3a^2+3a-3a^2-a}{a+1}=\frac{2a}{a+1}\end{cases}\)

Để x,y nguyên thì \(\begin{cases}3a+1\vdots a+1\\ 2a\vdots a+1\end{cases}\Rightarrow\begin{cases}3a+3-2\vdots a+1\\ 2a+2-2\vdots a+1\end{cases}\)

=>-2⋮a+1

=>a+1∈{1;-1;2;-2}

=>a∈{0;-2;1;-3}

Kết hợp (1), ta có: a∈{0;-2;-3}

Bài 3:

ĐKXĐ: x>=y

\(\begin{cases}\sqrt{\frac{x+y}{2}}+\sqrt{\frac{x-y}{3}}=14\\ \sqrt{\frac{x+y}{8}}-\sqrt{\frac{x-y}{12}}=3\end{cases}\Rightarrow\begin{cases}\sqrt{\frac{x+y}{2}}+\sqrt{\frac{x-y}{3}}=14\\ \frac12\left(\sqrt{\frac{x+y}{2}}-\sqrt{\frac{x-y}{3}}\right)=3\end{cases}\)

=>\(\begin{cases}\sqrt{\frac{x+y}{2}}+\sqrt{\frac{x-y}{3}}=14\\ \sqrt{\frac{x+y}{2}}-\sqrt{\frac{x-y}{3}}=6\end{cases}\Rightarrow\begin{cases}\sqrt{\frac{x+y}{2}}=10\\ \sqrt{\frac{x-y}{3}}=4\end{cases}\)

=>\(\begin{cases}\frac{x+y}{2}=100\\ \frac{x-y}{3}=16\end{cases}\Rightarrow\begin{cases}x+y=200\\ x-y=48\end{cases}\Rightarrow\begin{cases}x=\frac{200+48}{2}=\frac{248}{2}=124\\ y=200-124=76\end{cases}\) (nhận)

19 tháng 8 2021

\(P=\left(\frac{1}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+1}\right):\frac{\sqrt{x}}{x+\sqrt{x}}\)ĐK : x > 0 

\(=\left(\frac{\sqrt{x}+1+x}{\sqrt{x}\left(\sqrt{x}+1\right)}\right):\frac{1}{\sqrt{x}+1}=\frac{x+\sqrt{x}+1}{\sqrt{x}}\)

\(P=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{x-1}\)

\(=\frac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{x-1}=\frac{x-2\sqrt{x}+1}{x-1}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

19 tháng 8 2021

bạn bổ sung đk hộ mình ý 2 là : \(x\ge0;x\ne1\)nhé 

NM
29 tháng 8 2021

ta có 

\(A=B.\left|x-4\right|\Leftrightarrow\frac{\sqrt{x}+2}{\sqrt{x}-5}=\frac{1}{\sqrt{x}-5}.\left|x-4\right|\Leftrightarrow\sqrt{x}+2=\left|x-4\right|\)

Vậy :

\(\orbr{\begin{cases}\sqrt{x}+2=x-4\\\sqrt{x}+2=-x+4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-\sqrt{x}-6=0\\x+\sqrt{x}-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=3\\\sqrt{x}=1\end{cases}}}\)\(\Leftrightarrow\orbr{\begin{cases}x=9\\x=1\end{cases}}\)

29 tháng 8 2021

bạn cs chắc đây là đáp án đúng chứ

Bài 3:

a: ΔOBC cân tại O

mà OI là đường cao

nên I là trung điểm của BC

Xét ΔBOD có

BI là đường cao

BI là đường trung tuyến

Do đó: ΔBOD cân tại B

=>BO=BD

ma BO=OD

nên BO=BD=OD

=>ΔBOD đều

=>\(\hat{BOD}=\hat{BDO}=\hat{OBD}=60^0\)

Xét (O) có

ΔABD nội tiếp

AD là đường kính

Do đó: ΔABD vuông tại B

=>\(\hat{BAD}+\hat{BDA}=90^0\)

=>\(\hat{BAD}=90^0-60^0=30^0\)

Xét ΔAIB vuông tại I và ΔAIC vuông tại I có

AI chung

IB=IC

Do đó: ΔAIB=ΔAIC

=>AB=AC

ΔAIB=ΔAIC

=>\(\hat{IAB}=\hat{IAC}\)

=>AI là phân giác của góc BAC

=>\(\hat{BAC}=2\cdot\hat{BAD}=2\cdot30^0=60^0\)

Xét ΔABC có AB=AC và \(\hat{BAC}=60^0\)

nên ΔABC đều

b: ΔOBD đều

=>BD=OB=R

ΔABD vuông tại B

=>\(BA^2+BD^2=AD^2\)

=>\(BA^2=\left(2R\right)^2-R^2=3R^2\)

=>\(BA=R\sqrt3\)

=>\(BA=AC=BC=R\sqrt3\)


31 tháng 8 2021

hình 1 : cho tam giác ABC vuông tại A, hạ đường cao AH, H thuộc BC 

Xét tam giác ABC vuông tại A, đường AH

* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=y=\frac{AB^2}{BC}=\frac{225}{17}\)cm 

=> \(CH=x=BC-y=17-\frac{225}{17}=\frac{64}{17}\)cm 

* Áp dụng hệ thức : \(AC^2=c=CH.BC=\frac{64}{17}.17=64\Rightarrow AC=8\)cm 

* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=h=\frac{AB.AC}{BC}=\frac{15.8}{17}=\frac{120}{17}\)cm 

tương tự hình 2 ; 3 

1 tháng 9 2021

làm ko làm nốt luôn đi

dùng đã bt rồi nhưng cần kết quả để so sánh sai ở đâu