K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2:

a: \(\left(-\frac13x^2y\right)\cdot2xy^3=\left(-\frac13\cdot2\right)\cdot x^2\cdot x\cdot y\cdot y^3=-\frac23x^3y^4\)

b: \(\left(-\frac34x^2y\right)\cdot\left(-xy\right)^3=\left(-\frac34\right)\cdot\left(-1\right)\cdot x^2\cdot x^3\cdot y\cdot y^3=\frac34x^5y^4\)

c: \(\frac35\cdot x^2y^5\cdot x^3y^2\cdot\frac{-2}{3}=\left(\frac35\cdot\frac{-2}{3}\right)\cdot x^2\cdot x^3\cdot y^5\cdot y^2=-\frac25x^5y^7\)

d: \(\left(\frac34x^2y^3\right)\cdot\left(2\frac25x^4\right)=\frac34x^2y^3\cdot\frac{12}{5}x^4=\frac34\cdot\frac{12}{5}\cdot x^2\cdot x^4\cdot y^3=\frac95x^6y^3\)

e: \(\left(\frac{12}{15}x^4y^5\right)\cdot\left(\frac59x^2y\right)=\frac45\cdot\frac59\cdot x^4\cdot x^2\cdot y^5\cdot y=\frac49x^6y^6\)

f: \(\left(-\frac17x^2y\right)\left(-\frac{14}{5}x^4y^5\right)=\frac17\cdot\frac{14}{5}\cdot x^2\cdot x^4\cdot y\cdot y^5=\frac25x^6y^6\)

Bài 1: Các đơn thức là \(x^2y;-13;\left(-2\right)^3xy^7\)

17 tháng 9 2020

cái gì vậy bạn

17 tháng 9 2020

? bài ở đâu

S
18 tháng 8

\(a.xy-\left(-xy\right)+5xy=2xy+5xy=7xy\)

\(b.6xy^2-3xy^2-12xy^2=-9xy^2\)

\(c.3x^2y^3z^4+\left(-4x^2y^3z^4\right)=-x^2y^3z^4\)

\(d.4x^2y+\left(-8x^2y\right)=-4x^2y\)

\(e.25x^2y+\left(-55x^2y\right)=-30x^2y\)

\(f.3x^2y+4x^2y-x^2y=6x^2y\)

\(g.xy^2+x^2y+\left(-2xy^2\right)=-xy^2+x^2y=xy\left(x-y\right)\)

\(h.12x^2y^3z^4+\left(-7x^2y^3z^4\right)=5x^2y^3z^4\)

\(k.-6xy^3-\left(-6xy^3\right)+6x^3y=6x^3y\)

26 tháng 10 2017

1. A ko chia hết co B

2.

a, -2x+5

b, x^2

3.

a, 9x(x+3)(x-3)

b,c,d mink k bít xin lổi nha bucminh

4.

2x^2-4x+1

26 tháng 10 2017

Chúc bn hok tốtÔn tập phép nhân và phép chia đa thức

18 tháng 8 2017

23.27. \(x^2-y^2-2x+1\)

\(=\left(x-1\right)^2-y^2\)

\(=\left(x-1-y\right)\left(x-1+y\right)\)

23.25.

\(\left(x^2-4x\right)^2+\left(x-2\right)^2-10\)

\(=\left(x^2-4x\right)^2-4+\left(x-2\right)^2-6\)

\(=\left(x^2-4x+4\right)\left(x^2-4x-4\right)+x^2-4x+4-6\)

\(=\left(x^2-4x+4\right)\left(x^2-4x-10\right)\)

23.23

\(x^3-2x^2-6x+27\)

\(=\left(x^3+27\right)-2x\left(x+3\right)\)

\(=\left(x+3\right)\left(x^2-3x+9-2x\right)\)

\(=\left(x+3\right)\left(x^2-5x+9\right)\)

18 tháng 8 2017

23.27

\(x^2-y^2-2x+1\)

\(=\left(x^2-2x+1\right)-y^2\)

\(=\left(x-1\right)^2-y^2\)

\(=\left(x-1-y\right)\left(x-1-y\right)\)

a: Xét ΔABC có F,E lần lượt là trung điểm của AB,AC

=>FE là đường trung bình của ΔABC

=>FE//BC và \(FE=\frac12BC\)

=>BFEC là hình thang

Hình thang BFEC có \(\hat{FBC}=\hat{ECB}\) (ΔABC cân tại A)

nên BFEC là hình thang cân

b: Xét ΔABC có

F,D lần lượt là trung điểm của BA,BC

=>FD là đường trung bình của ΔABC

=>FD//AC và \(FD=\frac{AC}{2}\)

Xét ΔMAC có

I,K lần lượt là trung điểm của MA,MC

=>IK là đường trung bình củaΔMAC

=>IK//AC và \(IK=\frac{AC}{2}\)

Ta có: FD//AC

IK//AC

Do đó: FD//IK

Ta có: \(FD=\frac{AC}{2}\)

\(IK=\frac{AC}{2}\)

Do đó: FD=IK

Xét tứ giác FDKI có

FD//IK

FD=IK

Do đó: FDKI là hình bình hành

c: HK=HM+KM

\(=\frac12\cdot\left(MB+MC\right)=\frac12\cdot BC\)

=FE

Xét tứ giác FEKH có

FE//KH

FE=KH

Do đó: FEKH là hình bình hành

=>FK cắt EH tại trung điểm của mỗi đường(1)

FDKI là hình bình hành

=>FK cắt DI tại trung điểm của mỗi đường(2)

Từ (1),(2) suy ra FK,EH,DI đồng quy

d: ΔABC đều

mà AD là đường trung tuyến

nên AD là phân giác của góc BAC và AD⊥BC

=>\(\hat{BAD}=\frac12\cdot\hat{BAC}=\frac12\cdot60^0=30^0\)

Xét tứ giác APMD có \(\hat{APM}+\hat{ADM}=90^0+90^0=180^0\)

nên APMD là tứ giác nội tiếp đường tròn đường kính AM

=>APMD nội tiếp (I)

Xét (I) có \(\hat{PAD}\) là góc nội tiếp chắn cung PD

=>\(\hat{PID}=2\cdot\hat{PAD}=60^0\)

Xét ΔIPD có IP=ID và \(\hat{PID}=60^0\)

nên ΔIPD đều

\(2x+3y+5z=\frac{x^2+y^2+z^2}{2}+19\)

\(x^2+y^2+z^2+38=4x+6y+10z\)

\(\left(x^2-4x+4\right)+\left(y^2-6y+9\right)+\left(z^2-10z+25\right)=0\)

\(\left(x-2\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=0\)

\(x-2=y-3=z-5=0\)

\(x=2,y=3,z=5\)