K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
21 tháng 8 2023

Bài 1: 

a. $\frac{x}{2}=\frac{3,6}{1,2}=3$

$x=3.2=6$

b. 

$\frac{8}{2x+1}=\frac{4}{3}$

$2x+1=\frac{8.3}{4}=6$

$2x=6-1=5$

$x=\frac{5}{2}$

c. $\frac{x}{4}=\frac{9}{x}$

$x^2=9.4=36=6^2=(-6)^2$

$\Rightarrow x=\pm 6$

d.

$\frac{x+1}{2}=\frac{32}{x+1}$

$(x+1)^2=32.2=64=8^2=(-8)^2$

$\Rightarrow x+1=8$ hoặc $x+1=-8$

$\Rightarrow x=7$ hoặc $x=-9$

Bài 8:

Chu vi đáy là:

3,5+3,5+3+6=7+9=16(cm)

Diện tích xung quanh là: \(16\cdot11,5=184\left(\operatorname{cm}^2\right)\)

Bài 9:

Diện tích đáy là:

\(S=\frac12\cdot7\cdot24=12\cdot7=84\left(m^2\right)\)

Thể tích của khối bê tông là:

\(84\cdot22=1848\left(m^3\right)\)

Số tiền phải trả là:

\(1848\cdot2500000=4620000000\) (đồng)

Cách 1: ta có: \(\hat{yAB}+\hat{y^{\prime}AB}=180^0\) (hai góc kề bù)

=>\(\hat{y^{\prime}AB}=180^0-105^0=75^0\)

ta có: \(\hat{y^{\prime}AB}=\hat{x^{\prime}Bz}\left(=75^0\right)\)

mà hai góc này là hai góc ở vị trí đồng vị

nên Ay//Bz

=>yy'//Bz

Cách 2:

Ta có: \(\hat{x^{\prime}Bz}+\hat{xBz}=180^0\) (hai góc kề bù)

=>\(\hat{xBz}=180^0-75^0=105^0\)

Ta có: \(\hat{xBz}=\hat{yAB}\left(=105^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên Ay//Bz

=>yy'//Bz

a:

b: b và c song song với nhau

a: ta có: \(\hat{MNb}+\hat{cNb}=180^0\) (hai góc kề bù)

=>\(\hat{MNb}=180^0-55^0=125^0\)

b: ta có: \(\hat{MNb}=\hat{aMN}\left(=125^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên Ma//Nb

Ta có: \(\hat{z^{\prime}Ct^{\prime}}=\hat{zCB}\)(hai góc đối đỉnh)

\(\hat{z^{\prime}Ct^{\prime}}=50^0\)

nên \(\hat{zCB}=50^0\)

Ta có: \(\hat{zCB}=\hat{ABy}\left(=50^0\right)\)

mà hai góc này là hai góc ở vị trí đồng vị

nên By//Cz

Ta có: \(\hat{xAB}+\hat{yBA}=130^0+50^0=180^0\)

mà hai góc này là hai góc ở vị trí trong cùng phía

nên Ax//By

Ta có: Ax//By

By//Cz

Do đó: Ax//By//Cz

a: Ta có: \(\hat{AOD}+\hat{BOD}=180^0\) (hai góc kề bù)

=>\(\hat{BOD}=180^0-97^0=83^0\)

Trên cùng một nửa mặt phẳng bờ chứa tia OA, ta có: \(\hat{AOE}<\hat{AOD}\left(56^0<97^0\right)\)

nên tia OE nằm giữa hai tia OA và OD

=>\(\hat{AOE}+\hat{EOD}=\hat{AOD}\)

=>\(\hat{EOD}=97^0-56^0=41^0\)

Ta có: \(\hat{AOE}+\hat{EOC}+\hat{COB}=180^0\)

=>\(\hat{EOC}=180^0-56^0-42^0=82^0\)

b: Trên cùng một nửa mặt phẳng bờ chứa tia OE, ta có; \(\hat{EOD}<\hat{EOC}\left(41^0<82^0\right)\)

nên tia OD nằm giữa hai tia OE và OC

=>\(\hat{EOD}+\hat{DOC}=\hat{EOC}\)

=>\(\hat{DOC}=82^0-41^0=41^0\)

Ta có: tia OD nằm giữa hai tia OE và OC

\(\hat{DOE}=\hat{DOC}\left(=41^0\right)\)

Do đó: OD là phân giác của góc EOC

21 tháng 8

Giải:

\(\hat{A}\) + \(\hat{B}\) + \(\hat{C}\) = 180\(^0\) (tổng ba góc trong 1 tam giác)

\(\hat{A}\) = 180\(^0\) - \(\hat{B}-\hat{C}\)

\(\hat{A}\) = 180\(^0\) - \(70^0-30^0\)

\(\hat{A}\) = 110\(^0-30^0\)

\(\hat{A}\) = 80\(^0\)

\(\hat{A}\) = \(D\hat{C}A\)

Mà góc A và góc DCA là hai góc ở vị trí so le trong.

Vậy AB // CD

20 tháng 8 2023

Kẻ Az//Bx//Dy

=> BAD = BAz + DAz = (180o - ABx) + (180o - ADy) = 30o + 60o = 90o