
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.




a: Xét tứ giác DIHK có
góc DIH=góc DKH=góc KDI=90 độ
nên DIHK là hình chữ nhật
b: Xét tứ giác IHAK có
IH//AK
IH=AK
Do đó: IHAK là hình bình hành
=>B là trung điểm chung của IA và HK
Xét ΔIKA có IC/IK=IB/IA
nên BC//KA
Xét ΔIDA có IB/IA=IM/ID
nên BM//DA
=>B,C,M thẳng hàng

Bài 1:Sửa đề: \(\hat{B}-\hat{C}=30^0\)
Ta có: ABCD là hình thang
=>AB//CD
=>\(\hat{A}+\hat{D}=180^0\)
=>\(3\cdot\hat{D}+\hat{D}=180^0\)
=>\(4\cdot\hat{D}=180^0\)
=>\(\hat{D}=\frac{180^0}{4}=45^0\)
\(\hat{A}=3\cdot\hat{D}=3\cdot45^0=135^0\)
Ta có: AB//CD
=>\(\hat{B}+\hat{C}=180^0\)
mà \(\hat{B}-\hat{C}=30^0\)
nên \(\hat{B}=\frac{180^0+30^0}{2}=105^0;\hat{C}=105^0-30^0=75^0\)
Bài 3:
Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\hat{HAB}\) chung
Do đó: ΔAHB=ΔAKC
=>AH=AK và BH=CK
Xét ΔABC có \(\frac{AK}{AB}=\frac{AH}{AC}\)
nên KH//BC
Xét tứ giác BKHC có KH//BC và KC=BH
nên BKHC là hình thang cân
Bài 4:Sửa đề: Bỏ câu AC cắt BD tại O
b: Xét ΔABD và ΔBAC có
AB chung
BD=AC
AD=BC
Do đó: ΔABD=ΔBAC
=>\(\hat{ABD}=\hat{BAC}\)
=>\(\hat{IAB}=\hat{IBA}\)
=>IA=IB
c:
Xét ΔODC có \(\hat{ODC}=\hat{OCD}\)
nên ΔOCD cân tại O
=>OD=OC
=>O nằm trên đường trung trực của DC(1)
Ta có: IA+IC=AC
IB+ID=BD
mà IA=IB và AC=BD
nên IC=ID
=>I nằm trên đường trung trực của DC(2)
Từ (1),(2) suy ra OI là đường trung trực của DC
Ta có: OA+AD=OD
OB+BC=OC
mà AD=BC và OC=OD
nên OA=OB
=>O nằm trên đường trung trực của AB(3)
Ta có: IA=IB
=>I nằm trên đường trung trực của AB(4)
Từ (3),(4) suy ra OI là đường trung trực của AB


a: ta có: EI⊥BF
AC⊥BF
Do đó: EI//AC
=>\(\hat{IEB}=\hat{ACB}\) (hai góc đồng vị)
mà \(\hat{ABC}=\hat{ACB}\) (ΔABC cân tại A)
nên \(\hat{KBE}=\hat{IEB}\)
Xét ΔKBE vuông tại K và ΔIEB vuông tại I có
BE chung
\(\hat{KBE}=\hat{IEB}\)
Do đó: ΔKBE=ΔIEB
=>EK=BI
b: Điểm D ở đâu vậy bạn?

a: \(\left(a+b\right)^2-2ab\)
\(=a^2+2ab+b^2-2ab\)
\(=a^2+b^2\)
b: \(\left(a^2+b^2\right)^2-2a^2b^2\)
\(=\left(a^2\right)^2+2\cdot a^2\cdot b^2+\left(b^2\right)^2-2a^2b^2\)
\(=a^4+b^4\)
c: \(a^6+b^6=\left(a^2\right)^3+\left(b^2\right)^3\)
\(=\left(a^2+b^2\right)\left\lbrack\left(a^2\right)^2-a^2\cdot b^2+\left(b^2\right)^2\right\rbrack\)
\(=\left(a^2+b^2\right)\left\lbrack a^4-a^2b^2+b^4\right\rbrack\)
\(=\left(a^2+b^2\right)\left\lbrack a^4+2a^2b^2+b^4-3a^2b^2\right\rbrack\)
\(=\left(a^2+b^2\right)\left\lbrack\left(a^2+b^2\right)^2-3a^2b^2\right\rbrack\)
Bài 1. (a) Điều kiện: \(x\ne\pm1\).
Ta có: \(A=\left(\dfrac{x-2}{x-1}-\dfrac{x+3}{x+1}+\dfrac{3}{x-1}\right):\left(1-\dfrac{x+3}{x+1}\right)\)
\(=\left(\dfrac{x-2+3}{x-1}-\dfrac{x+3}{x+1}\right):\dfrac{x+1-\left(x+3\right)}{x+1}\)
\(=\left(\dfrac{x+1}{x-1}-\dfrac{x+3}{x+1}\right):\dfrac{x+1-x-3}{x+1}\)
\(=\dfrac{\left(x+1\right)^2-\left(x+3\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}:\dfrac{-2}{x+1}\)
\(=\dfrac{x^2+2x+1-x^2-2x+3}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{-2}\)
\(=\dfrac{4}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{-2}=\dfrac{2}{1-x}\)
Vậy: \(A=\dfrac{2}{1-x}\)
(b) \(A=3\Leftrightarrow\dfrac{2}{1-x}=3\)
\(\Rightarrow1-x=\dfrac{2}{3}\Leftrightarrow x=\dfrac{1}{3}\left(TM\right)\)
Vậy: \(x=\dfrac{1}{3}\)
Bài 2. (a) Phương trình tương đương với:
\(\dfrac{3\left(3x-2\right)}{12}+\dfrac{6\left(x+3\right)}{12}=\dfrac{4\left(x-1\right)}{12}+\dfrac{x+1}{12}\)
\(\Rightarrow3\left(3x-2\right)+6\left(x+3\right)=4\left(x-1\right)+x+1\)
\(\Leftrightarrow9x-6+6x+18=4x-4+x+1\)
\(\Leftrightarrow10x=-15\Leftrightarrow x=-\dfrac{3}{2}\)
Vậy: Phương trình có tập nghiệm \(S=\left\{-\dfrac{3}{2}\right\}\).
(b) Điều kiện: \(x\ne\pm1\). Phương trình tương đương với:
\(\dfrac{2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{2\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{2x^2+2}{\left(x+1\right)\left(x-1\right)}\)
\(\Rightarrow2\left(x+1\right)+2\left(x-1\right)=2x^2+2\)
\(\Leftrightarrow2x+2+2x-2=2x^2+2\)
\(\Leftrightarrow2x^2-4x+2=0\Leftrightarrow2\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow2\left(x-1\right)^2=0\Rightarrow x-1=0\Leftrightarrow x=1\left(KTM\right)\)
Vậy: Phương trình có tập nghiệm \(S=\varnothing\)