mn oi...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2023

Bài 1. (a) Điều kiện: \(x\ne\pm1\).

Ta có: \(A=\left(\dfrac{x-2}{x-1}-\dfrac{x+3}{x+1}+\dfrac{3}{x-1}\right):\left(1-\dfrac{x+3}{x+1}\right)\)

\(=\left(\dfrac{x-2+3}{x-1}-\dfrac{x+3}{x+1}\right):\dfrac{x+1-\left(x+3\right)}{x+1}\)

\(=\left(\dfrac{x+1}{x-1}-\dfrac{x+3}{x+1}\right):\dfrac{x+1-x-3}{x+1}\)

\(=\dfrac{\left(x+1\right)^2-\left(x+3\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}:\dfrac{-2}{x+1}\)

\(=\dfrac{x^2+2x+1-x^2-2x+3}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{-2}\)

\(=\dfrac{4}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{-2}=\dfrac{2}{1-x}\)

Vậy: \(A=\dfrac{2}{1-x}\)

 

(b) \(A=3\Leftrightarrow\dfrac{2}{1-x}=3\)

\(\Rightarrow1-x=\dfrac{2}{3}\Leftrightarrow x=\dfrac{1}{3}\left(TM\right)\)

Vậy: \(x=\dfrac{1}{3}\)

 

Bài 2. (a) Phương trình tương đương với:

\(\dfrac{3\left(3x-2\right)}{12}+\dfrac{6\left(x+3\right)}{12}=\dfrac{4\left(x-1\right)}{12}+\dfrac{x+1}{12}\)

\(\Rightarrow3\left(3x-2\right)+6\left(x+3\right)=4\left(x-1\right)+x+1\)

\(\Leftrightarrow9x-6+6x+18=4x-4+x+1\)

\(\Leftrightarrow10x=-15\Leftrightarrow x=-\dfrac{3}{2}\)

Vậy: Phương trình có tập nghiệm \(S=\left\{-\dfrac{3}{2}\right\}\).

 

(b) Điều kiện: \(x\ne\pm1\). Phương trình tương đương với:

\(\dfrac{2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{2\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{2x^2+2}{\left(x+1\right)\left(x-1\right)}\)

\(\Rightarrow2\left(x+1\right)+2\left(x-1\right)=2x^2+2\)

\(\Leftrightarrow2x+2+2x-2=2x^2+2\)

\(\Leftrightarrow2x^2-4x+2=0\Leftrightarrow2\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow2\left(x-1\right)^2=0\Rightarrow x-1=0\Leftrightarrow x=1\left(KTM\right)\)

Vậy: Phương trình có tập nghiệm \(S=\varnothing\)

QT
Quoc Tran Anh Le
Giáo viên
28 tháng 8

29 tháng 8

bạn ơi, mik ko thấy

26 tháng 7

26 tháng 7

a: Xét tứ giác DIHK có

góc DIH=góc DKH=góc KDI=90 độ

nên DIHK là hình chữ nhật

b: Xét tứ giác IHAK có

IH//AK

IH=AK

Do đó: IHAK là hình bình hành

=>B là trung điểm chung của IA và HK

Xét ΔIKA có IC/IK=IB/IA

nên BC//KA

Xét ΔIDA có IB/IA=IM/ID

nên BM//DA

=>B,C,M thẳng hàng

Bài 1:Sửa đề: \(\hat{B}-\hat{C}=30^0\)

Ta có: ABCD là hình thang

=>AB//CD

=>\(\hat{A}+\hat{D}=180^0\)

=>\(3\cdot\hat{D}+\hat{D}=180^0\)

=>\(4\cdot\hat{D}=180^0\)

=>\(\hat{D}=\frac{180^0}{4}=45^0\)

\(\hat{A}=3\cdot\hat{D}=3\cdot45^0=135^0\)

Ta có: AB//CD

=>\(\hat{B}+\hat{C}=180^0\)

\(\hat{B}-\hat{C}=30^0\)

nên \(\hat{B}=\frac{180^0+30^0}{2}=105^0;\hat{C}=105^0-30^0=75^0\)

Bài 3:

Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\hat{HAB}\) chung

Do đó: ΔAHB=ΔAKC

=>AH=AK và BH=CK

Xét ΔABC có \(\frac{AK}{AB}=\frac{AH}{AC}\)

nên KH//BC

Xét tứ giác BKHC có KH//BC và KC=BH

nên BKHC là hình thang cân

Bài 4:Sửa đề: Bỏ câu AC cắt BD tại O

b: Xét ΔABD và ΔBAC có

AB chung

BD=AC

AD=BC

Do đó: ΔABD=ΔBAC

=>\(\hat{ABD}=\hat{BAC}\)

=>\(\hat{IAB}=\hat{IBA}\)

=>IA=IB

c:

Xét ΔODC có \(\hat{ODC}=\hat{OCD}\)

nên ΔOCD cân tại O

=>OD=OC

=>O nằm trên đường trung trực của DC(1)

Ta có: IA+IC=AC

IB+ID=BD

mà IA=IB và AC=BD

nên IC=ID

=>I nằm trên đường trung trực của DC(2)

Từ (1),(2) suy ra OI là đường trung trực của DC

Ta có: OA+AD=OD

OB+BC=OC

mà AD=BC và OC=OD

nên OA=OB

=>O nằm trên đường trung trực của AB(3)

Ta có: IA=IB

=>I nằm trên đường trung trực của AB(4)

Từ (3),(4) suy ra OI là đường trung trực của AB

nhìn lé cả con mắt mà ko nhìn đc chữ

16 tháng 8

ko nhìn đc gì luôn á

x-2-1012
y41014

 

HQ
Hà Quang Minh
Giáo viên
11 tháng 9 2023

Ta có bảng sau:

\(x\)

–2

–1

0

1

2

\(y\)

4

1

0

1

4

a: ta có: EI⊥BF

AC⊥BF

Do đó: EI//AC

=>\(\hat{IEB}=\hat{ACB}\) (hai góc đồng vị)

\(\hat{ABC}=\hat{ACB}\) (ΔABC cân tại A)

nên \(\hat{KBE}=\hat{IEB}\)

Xét ΔKBE vuông tại K và ΔIEB vuông tại I có

BE chung

\(\hat{KBE}=\hat{IEB}\)

Do đó: ΔKBE=ΔIEB

=>EK=BI

b: Điểm D ở đâu vậy bạn?

a: \(\left(a+b\right)^2-2ab\)

\(=a^2+2ab+b^2-2ab\)

\(=a^2+b^2\)

b: \(\left(a^2+b^2\right)^2-2a^2b^2\)

\(=\left(a^2\right)^2+2\cdot a^2\cdot b^2+\left(b^2\right)^2-2a^2b^2\)

\(=a^4+b^4\)

c: \(a^6+b^6=\left(a^2\right)^3+\left(b^2\right)^3\)

\(=\left(a^2+b^2\right)\left\lbrack\left(a^2\right)^2-a^2\cdot b^2+\left(b^2\right)^2\right\rbrack\)

\(=\left(a^2+b^2\right)\left\lbrack a^4-a^2b^2+b^4\right\rbrack\)

\(=\left(a^2+b^2\right)\left\lbrack a^4+2a^2b^2+b^4-3a^2b^2\right\rbrack\)

\(=\left(a^2+b^2\right)\left\lbrack\left(a^2+b^2\right)^2-3a^2b^2\right\rbrack\)