loading...
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(=\dfrac{5\cdot2^{30}\cdot3^{18}-3^{20}\cdot2^{29}}{5\cdot2^{29}\cdot3^{32}-7\cdot2^{29}\cdot3^{18}}\)

\(=\dfrac{2^{29}\cdot3^{18}\left(5\cdot2-3^2\right)}{2^{29}\cdot3^{18}\left(5\cdot3^{14}-7\right)}=\dfrac{1}{5\cdot3^{14}-7}\)

10 tháng 9 2023

Cho mình hỏi làm sao từ bước 2 chuyển sang bước 3 vậy?

10 tháng 9

Kết luận của định lý ứng với hình vẽ là:

\(\hat{tOz}\) = 90\(^0\)

Kết luận của định lí ứng với hình vẽ sẽ là Ot⊥Oz

Bài 2:

a: \(A=\frac17+\frac{1}{7^2}+\cdots+\frac{1}{7^{100}}\)

=>\(7A=1+\frac17+\cdots+\frac{1}{7^{99}}\)

=>\(7A-A=1+\frac17+\cdots+\frac{1}{7^{99}}-\frac17-\frac{1}{7^2}-\cdots-\frac{1}{7^{100}}\)

=>\(6A=1-\frac{1}{7^{100}}=\frac{7^{100}-1}{7^{100}}\)

=>\(A=\frac{7^{100}-1}{6\cdot7^{100}}\)

b: \(B=\frac53+\frac{5}{3^2}+\frac{5}{3^3}+\cdots+\frac{5}{3^{20}}\)

=>\(3B=5+\frac53+\frac{5}{3^2}+\cdots+\frac{5}{3^{19}}\)

=>\(3B-B=5+\frac53+\frac{5}{3^2}+\cdots+\frac{5}{3^{19}}-\frac53-\frac{5}{3^2}-\cdots-\frac{5}{3^{20}}\)

=>\(2B=5-\frac{5}{3^{20}}=\frac{5\cdot3^{20}-5}{3^{20}}\)

=>\(B=\frac{5\cdot3^{20}-5}{2\cdot3^{20}}\)

c: \(C=-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-\cdots+\frac{1}{3^{50}}\)

=>\(3C=-1+\frac13-\frac{1}{3^2}+\frac{1}{3^3}-\cdots+\frac{1}{3^{49}}\)

=>\(3C+C=-1+\frac13-\frac{1}{3^2}+\frac{1}{3^3}-\cdots+\frac{1}{3^{49}}-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-\cdots+\frac{1}{3^{50}}\)

=>\(4C=-1+\frac{1}{3^{50}}=\frac{-3^{50}+1}{3^{50}}\)

=>\(C=\frac{-3^{50}+1}{4\cdot3^{50}}\)

d: \(D=\left(-\frac17\right)^0+\left(-\frac17\right)^1+\left(-\frac17\right)^2+\cdots+\left(-\frac17\right)^{2017}\)

=>\(D=1-\frac17+\frac{1}{7^2}-\frac{1}{7^3}+\cdots-\frac{1}{7^{2017}}\)

=>\(7D=7-1+\frac17-\frac{1}{7^2}+\cdots-\frac{1}{7^{2016}}\)

=>\(7D+D=7-1+\frac17-\frac{1}{7^2}+\cdots-\frac{1}{7^{2016}}+1-\frac17+\frac{1}{7^2}-\frac{1}{7^3}+\cdots-\frac{1}{7^{2017}}\)

=>\(8D=7-\frac{1}{7^{2017}}=\frac{7^{2018}-1}{7^{2017}}\)

=>\(D=\frac{7^{2018}-1}{8\cdot7^{2017}}\)

e: \(E=\frac12+\frac{1}{2^3}+\frac{1}{2^5}+\cdots+\frac{1}{2^{99}}\)

=>\(4E=2+\frac12+\frac{1}{2^3}+\cdots+\frac{1}{2^{97}}\)

=>\(4E-E=2+\frac12+\frac{1}{2^3}+\cdots+\frac{1}{2^{97}}-\frac12-\frac{1}{2^3}-\frac{1}{2^5}-\cdots-\frac{1}{2^{99}}\)

=>\(3E=2-\frac{1}{2^{99}}=\frac{2^{100}-1}{2^{99}}\)

=>\(E=\frac{2^{100}-1}{3\cdot2^{99}}\)

Bài 1:

a: \(A=2\cdot4+4\cdot6+6\cdot8+\cdots+98\cdot100\)

\(=4\left(1\cdot2+2\cdot3+3\cdot4+\cdots+49\cdot50\right)\)

\(=4\left\lbrack1\left(1+1\right)+2\left(2+1\right)+3\left(3+1\right)+\cdots+49\left(49+1\right)\right\rbrack\)

\(=4\left\lbrack\left(1^2+2^2+\cdots+49^2\right)+\left(1+2+3+\cdots+49\right)\right\rbrack\)

\(=4\cdot\left\lbrack\frac{49\left(49+1\right)\left(2\cdot49+1\right)}{6}+\frac{49\cdot50}{2}\right\rbrack=4\cdot\left\lbrack\frac{49\cdot50\cdot99}{6}+49\cdot25\right\rbrack\)

\(=4\cdot\left\lbrack49\cdot25\cdot33+49\cdot25\right\rbrack=4\cdot49\cdot25\cdot34=100\cdot49\cdot34\)

=166600

b: \(B=1\cdot99+2\cdot98+\cdots+97\cdot3+98\cdot2+99\cdot1\)

\(=2\cdot\left(1\cdot99+2\cdot98+\cdots+48\cdot52+49\cdot51\right)+50^2\)

\(=2\cdot\left\lbrack1\left(100-1\right)+2\left(100-2\right)+\cdots+48\left(100-48\right)+49\left(100-49\right)\right\rbrack+50^2\)

\(=2\left\lbrack100\left(1+2+\cdots+49\right)-\left(1^2+2^2+\cdots+49^2\right)\right\rbrack\) +2500

\(=2\cdot\left\lbrack100\cdot\frac{49\cdot50}{2}-\frac{49\cdot\left(49+1\right)\left(2\cdot49+1\right)}{6}\right\rbrack+2500\)

\(=2\cdot\left\lbrack100\cdot49\cdot25-\frac{49\cdot50\cdot99}{6}\right\rbrack+2500\)

\(=2\cdot\left\lbrack100\cdot49\cdot25-49\cdot25\cdot33\right\rbrack+2500=2\cdot25\cdot49\left(100-33\right)+2500\)

\(=50\cdot49\cdot67+2500=166650\)

d: \(D=2^2+4^2+\cdots+98^2+100^2\)

\(=2^2\left(1^2+2^2+\cdots+49^2+50^2\right)\)

\(=4\cdot\frac{50\cdot\left(50+1\right)\left(2\cdot50+1\right)}{6}=4\cdot\frac{50\cdot51\cdot101}{6}\)

\(=4\cdot25\cdot17\cdot101=100\cdot17\cdot101=171700\)

e: \(E=1^2+3^2+5^2+\cdots+99^2\)
\(=\left(1^2+2^2+3^2+4^2+\cdots+99^2+100^2\right)-\left(2^2+4^2+\cdots+100^2\right)\)

\(=\frac{100\left(100+1\right)\left(2\cdot100+1\right)}{6}-2^2\left(1^2+2^2+\cdots+50^2\right)\)

\(=\frac{100\cdot101\cdot201}{6}-4\cdot\frac{50\left(50+1\right)\left(2\cdot50+1\right)}{6}\)

\(=50\cdot101\cdot67-4\cdot\frac{50\cdot51\cdot101}{6}\)

\(=50\cdot101\cdot67-4\cdot25\cdot17\cdot101=101\cdot50\left(67-2\cdot17\right)\)

\(=50\cdot101\cdot33=166650\)

f: \(F=1^2-2^2+3^2-4^2+\cdots+99^2-100^2\)

\(=\left(1-2\right)\left(1+2\right)+\left(3-4\right)\left(3+4\right)+\cdots+\left(99-100\right)\left(99+100\right)\)

=-(1+2+3+4+...+99+100)

\(=-100\cdot\frac{101}{2}=-50\cdot101=-5050\)

Bài 1:

Xét ΔBAK vuông tại A và ΔBHK vuông tại H có

BK chung

KA=KH

=>ΔBAK=ΔBHK

=>BA=BH

mà KA=KH

nên BK là trung trực của AH

=>BK vuông góc AH

26 tháng 1 2024

loading... a) ∆ABC cân tại A

⇒ ∠ABC = ∠ACB

Mà ∠ACB = ∠ECN (đối đỉnh)

⇒ ∠ABC = ∠ECN

⇒ ∠DBM = ∠ECN

Xét hai tam giác vuông: ∆DBM và ∆ECN có:

BD = CE (gt)

∠DBM = ∠ECN (cmt)

⇒ ∆DBM = ∆ECN (cạnh góc vuông - góc nhọn kề)

⇒ DM = EN (hai cạnh tương ứng)

b) Do DM ⊥ BC (gt)

EN ⊥ BC (gt)

⇒ DM // EN

⇒ ∠DMI = ∠ENI (so le trong)

Xét hai tam giác vuông: ∆DMI và ∆ENI có:

DM = EN (cmt)

∠DMI = ∠ENI (cmt)

⇒ ∆DMI = ∆ENI (cạnh góc vuông - góc nhọn kề)

⇒ MI = NI (hai cạnh tương ứng)

⇒ I là trung điểm của MN

⇒ BC cắt MN tại trung điểm I của MN

c) Do AH ⊥ BC nên AH là đường cao của ∆ABC

Mà ∆ABC cân tại A

AH cũng là đường phân giác của ∆ABC

⇒ ∠BAH = ∠CAH

⇒ ∠BAO = ∠CAO

Do ∆ABC cân tại A (gt)

⇒ AB = AC

Xét ∆OAB và ∆OAC có:

OA là cạnh chung

∠BAO = ∠CAO (cmt)

AB = AC (cmt)

⇒ ∆OAB = ∆OAC (c-g-c)

⇒ OB = OC (hai cạnh tương ứng)

Ta có:

I là trung điểm MN (cmt)

OI ⊥ MN (gt)

⇒ OI là đường trung trực của MN

⇒ OM = ON

Do ∆DBM = ∆ECN (cmt)

⇒ BM = CN (hai cạnh tương ứng)

Xét ∆OBM và ∆OCN có:

OB = OC (cmt)

OM = ON (cmt)

BM = CN (cmt)

⇒ ∆OBM = ∆OCN (c-c-c)

d) Do ∆OBM = ∆OCN (cmt)

⇒ ∠OBM = ∠OCN (hai góc tương ứng)

Do ∆OAB = ∆OAC (cmt)

⇒ ∠OBA = ∠OCA (hai góc tương ứng)

⇒ ∠OBM = ∠OCA

Mà ∠OBM = ∠OCN (cmt)

⇒ ∠OCN = ∠OCA

Mà ∠OCN + ∠OCA = 180⁰ (kề bù)

⇒ ∠OCN = ∠OCA = 180⁰ : 2 = 90⁰

⇒ OC ⊥ AC

26 tháng 1 2024

a) ∆ABC cân tại A

⇒ ∠ABC = ∠ACB

Mà ∠ACB = ∠ECN (đối đỉnh)

⇒ ∠ABC = ∠ECN

⇒ ∠DBM = ∠ECN

Xét hai tam giác vuông: ∆DBM và ∆ECN có:

BD = CE (gt)

∠DBM = ∠ECN (cmt)

⇒ ∆DBM = ∆ECN (cạnh góc vuông - góc nhọn kề)

⇒ DM = EN (hai cạnh tương ứng)

b) Do DM ⊥ BC (gt)

EN ⊥ BC (gt)

⇒ DM // EN

⇒ ∠DMI = ∠ENI (so le trong)

Xét hai tam giác vuông: ∆DMI và ∆ENI có:

DM = EN (cmt)

∠DMI = ∠ENI (cmt)

⇒ ∆DMI = ∆ENI (cạnh góc vuông - góc nhọn kề)

⇒ MI = NI (hai cạnh tương ứng)

⇒ I là trung điểm của MN

⇒ BC cắt MN tại trung điểm I của MN

c) Do AH ⊥ BC nên AH là đường cao của ∆ABC

Mà ∆ABC cân tại A

AH cũng là đường phân giác của ∆ABC

⇒ ∠BAH = ∠CAH

⇒ ∠BAO = ∠CAO

Do ∆ABC cân tại A (gt)

⇒ AB = AC

Xét ∆OAB và ∆OAC có:

OA là cạnh chung

∠BAO = ∠CAO (cmt)

AB = AC (cmt)

⇒ ∆OAB = ∆OAC (c-g-c)

⇒ OB = OC (hai cạnh tương ứng)

Ta có:

I là trung điểm MN (cmt)

OI ⊥ MN (gt)

⇒ OI là đường trung trực của MN

⇒ OM = ON

Do ∆DBM = ∆ECN (cmt)

⇒ BM = CN (hai cạnh tương ứng)

Xét ∆OBM và ∆OCN có:

OB = OC (cmt)

OM = ON (cmt)

BM = CN (cmt)

⇒ ∆OBM = ∆OCN (c-c-c)

d) Do ∆OBM = ∆OCN (cmt)

⇒ ∠OBM = ∠OCN (hai góc tương ứng)

Do ∆OAB = ∆OAC (cmt)

⇒ ∠OBA = ∠OCA (hai góc tương ứng)

⇒ ∠OBM = ∠OCA

Mà ∠OBM = ∠OCN (cmt)

⇒ ∠OCN = ∠OCA

Mà ∠OCN + ∠OCA = 180⁰ (kề bù)

⇒ ∠OCN = ∠OCA = 180⁰ : 2 = 90⁰

⇒ OC ⊥ AC

26 tháng 1 2024

loading... a) ∆ABC cân tại A

⇒ ∠ABC = ∠ACB

Mà ∠ACB = ∠ECN (đối đỉnh)

⇒ ∠ABC = ∠ECN

⇒ ∠DBM = ∠ECN

Xét hai tam giác vuông: ∆DBM và ∆ECN có:

BD = CE (gt)

∠DBM = ∠ECN (cmt)

⇒ ∆DBM = ∆ECN (cạnh góc vuông - góc nhọn kề)

⇒ DM = EN (hai cạnh tương ứng)

b) Do DM ⊥ BC (gt)

EN ⊥ BC (gt)

⇒ DM // EN

⇒ ∠DMI = ∠ENI (so le trong)

Xét hai tam giác vuông: ∆DMI và ∆ENI có:

DM = EN (cmt)

∠DMI = ∠ENI (cmt)

⇒ ∆DMI = ∆ENI (cạnh góc vuông - góc nhọn kề)

⇒ MI = NI (hai cạnh tương ứng)

⇒ I là trung điểm của MN

⇒ BC cắt MN tại trung điểm I của MN

c) Do AH ⊥ BC nên AH là đường cao của ∆ABC

Mà ∆ABC cân tại A

AH cũng là đường phân giác của ∆ABC

⇒ ∠BAH = ∠CAH

⇒ ∠BAO = ∠CAO

Do ∆ABC cân tại A (gt)

⇒ AB = AC

Xét ∆OAB và ∆OAC có:

OA là cạnh chung

∠BAO = ∠CAO (cmt)

AB = AC (cmt)

⇒ ∆OAB = ∆OAC (c-g-c)

⇒ OB = OC (hai cạnh tương ứng)

Ta có:

I là trung điểm MN (cmt)

OI ⊥ MN (gt)

⇒ OI là đường trung trực của MN

⇒ OM = ON

Do ∆DBM = ∆ECN (cmt)

⇒ BM = CN (hai cạnh tương ứng)

Xét ∆OBM và ∆OCN có:

OB = OC (cmt)

OM = ON (cmt)

BM = CN (cmt)

⇒ ∆OBM = ∆OCN (c-c-c)

d) Do ∆OBM = ∆OCN (cmt)

⇒ ∠OBM = ∠OCN (hai góc tương ứng)

Do ∆OAB = ∆OAC (cmt)

⇒ ∠OBA = ∠OCA (hai góc tương ứng)

⇒ ∠OBM = ∠OCA

Mà ∠OBM = ∠OCN (cmt)

⇒ ∠OCN = ∠OCA

Mà ∠OCN + ∠OCA = 180⁰ (kề bù)

⇒ ∠OCN = ∠OCA = 180⁰ : 2 = 90⁰

⇒ OC ⊥ AC

AH
Akai Haruma
Giáo viên
26 tháng 1 2024

Lời giải:
Trên $AC$ lấy $E$ sao cho $AB=AE$. Xét tam giác $ABD$ và $AED$ có:

$\widehat{BAD}=\widehat{EAD}$ (do $AD$ là tia phân giác $\widehat{A}$)

$AD$ chung

$AB=AE$

$\Rightarrow \triangle ABD=\triangle AED$ (c.g.c)

$\Rightarrow BD=DE(1)$ và $\widehat{ABD}=\widehat{AED}$

Có:

$\widehat{DEC}=180^0-\widehat{AED}=180^0-\widehat{ABD}=\widehat{ECD}+\widehat{BAC}> \widehat{ECD}$

$\Rightarrow DC> DE(2)$

Từ $(1); (2)\Rightarrow DC> DB$

AH
Akai Haruma
Giáo viên
26 tháng 1 2024

Hình vẽ:

11 tháng 1 2024

          \(\widehat{M_1}\) = \(\widehat{M_3}\) (hai góc đối đỉnh)

         \(\widehat{M_3}\) + \(\widehat{N_1}\) = 1800 (hai góc trong cùng phía)

         \(\widehat{M_3}\)         = 1800 - \(\widehat{N_1}\) 

         \(\widehat{M_3}\)         = 1800 - 500

         \(\widehat{M_3}\)        = 1300

        ⇒ \(\widehat{M_1}\) = 1300

Kết luận: \(\widehat{M_1}\) = 1300

           

a: Ta có: \(3x+\left(x-\frac{9}{20}\right)=-\frac{13}{40}\)

=>\(3x+x-\frac{9}{20}=-\frac{13}{40}\)

=>\(4x=-\frac{13}{40}+\frac{9}{20}=-\frac{13}{40}+\frac{18}{40}=\frac{5}{40}=\frac18\)

=>\(x=\frac18:4=\frac{1}{32}\)

b: \(x+\left(\frac14x-2,5\right)=-\frac{11}{20}\)

=>\(x+\frac14x-2,5=-\frac{11}{20}\)

=>\(1,25x=-0,55+2,5=1,95\)

=>\(x=\frac{1.95}{1.25}=\frac{195}{125}=\frac{39}{25}\)

c: \(\frac35x+\left(x+0,5\right)=-\frac{13}{15}\)

=>\(\frac35x+x+0,5=-\frac{13}{15}\)

=>\(\frac85x=-\frac{13}{15}-0,5=-\frac{26}{30}-\frac{15}{30}=-\frac{41}{30}\)

=>\(x=-\frac{41}{30}:\frac85=-\frac{41}{30}\cdot\frac58=\frac{-41}{6\cdot8}=-\frac{41}{48}\)

d: \(-\frac23x+\left(4x-\frac67\right)=\frac{9}{21}\)

=>\(-\frac23x+4x-\frac67=\frac37\)

=>\(\frac{10}{3}x=\frac37+\frac67=\frac97\)

=>\(x=\frac97:\frac{10}{3}=\frac97\cdot\frac{3}{10}=\frac{27}{70}\)

S
6 tháng 9

bài 11: câu a:

\(3x+\left(x-\frac{9}{20}\right)=-\frac{13}{40}\)

\(3x+x-\frac{9}{20}=-\frac{13}{40}\)

\(4x=-\frac{13}{40}+\frac{9}{20}\)

\(4x=-\frac{13}{40}+\frac{18}{40}\)

\(4x=\frac{5}{40}\)

\(4x=\frac18\)

\(x=\frac18:4=\frac18\cdot\frac14=\frac{1}{32}\)

b. \(x+\left(\frac14x-2,5\right)=-\frac{11}{20}\)

\(x+\frac14x-2,5=-\frac{11}{20}\)

\(\frac54x-2,5=-\frac{11}{20}\)

\(\frac54x=-\frac{11}{20}+2,5\)

\(\frac54x=\frac{39}{20}\)

\(x=\frac{39}{20}:\frac54=\frac{39}{20}\cdot\frac45=\frac{39}{25}\)

c. \(\frac35x+\left(x+0,5\right)=-\frac{13}{15}\)

\(\frac35x+x+0,5=-\frac{13}{15}\)

\(\frac85x+\frac12=-\frac{13}{15}\)

\(\frac85x=-\frac{13}{15}-\frac12\)

\(\frac85x=-\frac{41}{30}\)

\(x=-\frac{41}{30}:\frac85=-\frac{41}{30}\cdot\frac58=-\frac{41}{48}\)

\(d.-\frac23x+\left(4x-\frac67\right)=\frac{9}{21}\)

\(-\frac23x+4x-\frac67=\frac{9}{21}\)

\(\frac{10}{3}x=\frac97\)

\(x=\frac97:\frac{10}{3}=\frac97\cdot\frac{3}{10}=\frac{27}{70}\)