Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt \(a=\dfrac{1}{x};b=\dfrac{1}{y};c=\dfrac{1}{z}\Rightarrow xyz=1\) và \(x;y;z>0\)
Gọi biểu thức cần tìm GTNN là P, ta có:
\(P=\dfrac{1}{\dfrac{1}{x^3}\left(\dfrac{1}{y}+\dfrac{1}{z}\right)}+\dfrac{1}{\dfrac{1}{y^3}\left(\dfrac{1}{z}+\dfrac{1}{x}\right)}+\dfrac{1}{\dfrac{1}{z^3}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)}\)
\(=\dfrac{x^3yz}{y+z}+\dfrac{y^3zx}{z+x}+\dfrac{z^3xy}{x+y}=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)
\(P\ge\dfrac{\left(x+y+z\right)^2}{y+z+z+x+x+y}=\dfrac{x+y+z}{2}\ge\dfrac{3\sqrt[3]{xyz}}{2}=\dfrac{3}{2}\)
\(P_{min}=\dfrac{3}{2}\) khi \(x=y=z=1\) hay \(a=b=c=1\)
Đặt \(a = \frac{1}{x} ; b = \frac{1}{y} ; c = \frac{1}{z} \Rightarrow x y z = 1\) và \(x ; y ; z > 0\)
Gọi biểu thức cần tìm GTNN là P, ta có:
\(P = \frac{1}{\frac{1}{x^{3}} \left(\right. \frac{1}{y} + \frac{1}{z} \left.\right)} + \frac{1}{\frac{1}{y^{3}} \left(\right. \frac{1}{z} + \frac{1}{x} \left.\right)} + \frac{1}{\frac{1}{z^{3}} \left(\right. \frac{1}{x} + \frac{1}{y} \left.\right)}\)
\(= \frac{x^{3} y z}{y + z} + \frac{y^{3} z x}{z + x} + \frac{z^{3} x y}{x + y} = \frac{x^{2}}{y + z} + \frac{y^{2}}{z + x} + \frac{z^{2}}{x + y}\)
\(P \geq \frac{\left(\left(\right. x + y + z \left.\right)\right)^{2}}{y + z + z + x + x + y} = \frac{x + y + z}{2} \geq \frac{3 \sqrt[3]{x y z}}{2} = \frac{3}{2}\)
\(P_{m i n} = \frac{3}{2}\) khi \(x = y = z = 1\) hay \(a = b = c = 1\)

a: Xét ΔKAD và ΔBDA có
\(\hat{KAD}=\hat{BDA}\) (hai góc so le trong, AK//BD)
AD chung
\(\hat{KDA}=\hat{BAD}\) (hai góc so le trong, AB//CD)
Do đó: ΔKAD=ΔBDA
=>KA=BD
mà BD=AC
nên AK=AC
=>ΔAKC cân tại A
b: ΔAKC cân tại A
=>\(\hat{AKC}=\hat{ACK}\)
mà \(\hat{AKC}=\hat{BDC}\) (hai góc đồng vị, BD//AK)
nên \(\hat{BDC}=\hat{ACD}\)
Xét ΔBDC va ΔACD có
BD=AC
\(\hat{BDC}=\hat{ACD}\)
CD chung
Do đó: ΔBDC=ΔACD
=>\(\hat{BCD}=\hat{ADC}\)
=>ABCD là hình thang cân

\({x^2} = {4^2} + {2^2} = 20 \Rightarrow x = 2\sqrt 5 \)
\({y^2} = {5^2} - {4^2} = 9 \Leftrightarrow y = 3\)
\({z^2} = {\left( {\sqrt 5 } \right)^2} + {\left( {2\sqrt 5 } \right)^2} = 25 \Rightarrow z = 5\)
\({t^2} = {1^2} + {2^2} = 5 \Rightarrow t = \sqrt 5 \)

Bài 1:
\(M=x^3-6x^2+12x-8\)
\(=x^3-3\cdot x^2\cdot2+3\cdot x\cdot2^2-2^3\)
\(=\left(x-2\right)^3\)
Thay x=12 vào M, ta được:
\(M=\left(12-2\right)^3=10^3=1000\)
Bài 2:
a: \(P=\left(x+1\right)^3-x\left(x-2\right)\left(x+3\right)\)
\(=x^3+3x^2+3x+1-x\left(x^2+3x-2x-6\right)\)
\(=x^3+3x^2+3x+1-x\left(x^2+x-6\right)\)
\(=x^3+3x^2+3x+1-x^3-x^2+6x=2x^2+9x+1\)
b: Thay x=2 vào P, ta được:
\(P=2\cdot2^2+9\cdot2+1=8+18+1=9+18=27\)
Bài 3:
a: \(5x^2-10x=5x\cdot x-5x\cdot2=5x\left(x-2\right)\)
b: \(x^2-12xy+36y^2-49\)
\(=\left(x-6y\right)^2-7^2\)
=(x-6y-7)(x-6y+7)
c: \(3x+x^2-3y-y^2\)
\(=x^2-y^2+3\left(x-y\right)\)
=(x-y)(x+y)+3(x-y)
=(x-y)(x+y+3)
Bài 4:
a: \(x\left(2x-1\right)-3\left(1-2x\right)=0\)
=>x(2x-1)+3(2x-1)=0
=>(2x-1)(x+3)=0
=>\(\left[\begin{array}{l}2x-1=0\\ x+3=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=\frac12\\ x=-3\end{array}\right.\)
b: \(\left(3x+4\right)^2-\left(3x-1\right)\left(3x+1\right)=49\)
=>\(9x^2+24x+16-9x^2+1=49\)
=>24x+17=49
=>24x=49-17=32
=>\(x=\frac{32}{24}=\frac43\)
c: \(x^2+2x=15\)
=>\(x^2+2x-15=0\)
=>(x+5)(x-3)=0
=>\(\left[\begin{array}{l}x+5=0\\ x-3=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-5\\ x=3\end{array}\right.\)
Bài 5:
a: C=A+B
\(=xy-3x^2y^2+x^4-5y^3+x^4-5y^3-2x^2y^2-xy=-5x^2y^2+2x^4-10y^3\)
b: Bậc của C là 4
c: Thay x=-1;y=-1 vào C, ta được:
\(C=-5\cdot\left(-1\right)^2\cdot\left(-1\right)^2+2\cdot\left(-1\right)^4-10\cdot\left(-1\right)^3\)
=-5+2+10
=-3+10
=7
Bài 6:
a: \(A=2x^2-4x+2xy+y^2+2025\)
\(=x^2-4x+4+x^2+2xy+y^2+2021=\left(x-2\right)^2+\left(x+y\right)^2+2021\ge2021\forall x,y\)
Dấu '=' xảy ra khi x-2=0 và x+y=0
=>x=2 và y=-x=-2
b: (x-7)(x-5)(x-4)(x-2)-72
\(=\left(x^2-9x+14\right)\left(x^2-9x+20\right)-72\)
\(=\left(x^2-9x+14\right)^2+6\left(x^2-9x+14\right)-72\)
\(=\left(x^2-9x+14+12\right)\left(x^2-9x+14-6\right)=\left(x^2-9x+26\right)\left(x^2-9x+8\right)\)
\(=\left(x^2-9x+26\right)\left(x-1\right)\left(x-8\right)\)

a: Xét ΔMNP và ΔKPN có
\(\hat{MNP}=\hat{KPN}\) (hai góc so le trong, MN//PK)
NP chung
\(\hat{MPN}=\hat{KNP}\) (hai góc so le trong, MP//NK)
Do đó: ΔMNP=ΔKPN
=>MN=KP; MP=KN
ta có: MP=KN
MP=NQ
Do đó: NK=NQ
=>ΔNKQ cân tại N
b: Ta có: ΔNKQ cân tại N
=>\(\hat{NKQ}=\hat{NQK}\)
mà \(\hat{NKQ}=\hat{MPQ}\) (hai góc đồng vị, MP//NK)
nên \(\hat{MPQ}=\hat{NQP}\)
Xét ΔMQP và ΔNPQ có
MP=NQ
\(\hat{MPQ}=\hat{NQP}\)
PQ chung
Do đó: ΔMQP=ΔNPQ
c: ΔMQP=ΔNPQ
=>\(\hat{MQP}=\hat{NPQ}\)
=>MNPQ là hình thang cân

Vì MN // BC theo Talet ta có:
\(\dfrac{y}{20}\) = \(\dfrac{10}{15}\) = \(\dfrac{x}{12}\) => x = \(\dfrac{10}{15}\) . 12 = 8; y = \(\dfrac{10}{15}\) . 20 = \(\dfrac{40}{3}\)

\(P=\left(x-1\right)\left(x^2+x+1\right)+2\cdot\left(x-2\right)\left(x+2\right)+x^2\left(2-x\right)\)
\(=x^3-1+2\left(x^2-4\right)+2x^2-x^3\)
\(=2x^2-1+2x^2-8=4x^2-9\)
=>P có phụ thuộc vào biến x
a: =x^2+6x+9+x^2-6x+9+2x^2-32
=4x^2-14
b: =(x+3-10+x)^2=(2x-7)^2=4x^2-28x+49
c: =(x-3-x+5)^2=2^2=4
e: =x^2+10x+25-x^2+10x-25=20x
d: A=(5-1)(5+1)(5^2+1)(5^4+1)/4
=(5^2-1)(5^2+1)(5^4+1)/4
=(5^4-1)(5^4+1)/4
=(5^8-1)/4
g: =x^2-9-x^2-4x+5
=-4x-4