Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1:
a) Tìm số nguyên tố abcd sao cho ab ,cd là các số nguyên tố và b2=cd + b - c
b) Tìm các số tự nhiên có 2 chữ số mà số đó chia hết cho tích của chúng
c) Tìm số nguyên tố p và q sao cho 7p+q và pq+11 đều là các số nguyên tố
Câu 2:So sánh 2 số sau:
a)31111 và 17139
b)2011 . 23 mũ 2 mũ 3(xl nha,mình k viết dk lũy thừa tầng) và 2010.32 mũ 3 mũ 2

Bài 1:
6) 3x + 2³ = 17 + 3²
3x + 8 = 17 + 9
3x + 8 = 26
3x = 26 - 8
3x = 18
x = 18 : 3
x = 6
Vậy x = 6
Bài 2:
3) 145 - (125 + x) = 12
125 + x = 145 - 12
125 + x = 133
x = 133 - 125
x = 8
Vậy x = 8
6) 3³ - (x - 5) = 2²
27 - (x - 5) = 4
x - 5 = 27 - 4
x - 5 = 23
x = 23 + 5
x = 28
Vậy x = 28
9) (x + 7) - 15⁰ = 202 - 19
(x + 7) - 1 = 189
x + 7 = 189 + 1
x + 7 = 190
x = 190 - 7
x - 183
Vậy x = 183

ở bài 1 đầu bài là viết các tich và các thương sau dưới dạng lũy thừa mình viết thiếu

Giải:
A = 3\(^0\) + 3\(^1\) + 3\(^2\) + ... + 3\(\)\(^{2021}\)
Xét dãy số: 0; 1; 2;...; 2021
Dãy số trên là dãy số cách đều với khoảng cách là: 1 - 0 = 1
Số số hạng của dãy số trên là: (2021 - 0) : 1 + 1 = 2022
A có 2022 hạng tử. Vì 2022 : 3 = 674
Vậy nhóm ba hạng tử liên tiếp của A vào nhau ta được:
A = (3\(^0\) + 3\(^1\) + 3\(^2\)) + (3\(^3\) + 3\(^4\) + 3\(^5\)) +...+ (3\(^{2019}\) + 3\(^{2020}\)+ 3\(^{2021}\))
A = (1+ 3 + 9)+ 3\(^3\).(1 + 3 + 9) + ... + 3\(^{2019}\) .(\(1+3+9\))
A = (1 + 3 +9).(1 + 3\(^3\) + ... + 3\(^{2019}\))
A = (4 + 9).(1 + 3\(^3\) + ... + 3\(^{2019}\))
A = 13.(1 + 3\(^3\) + ... + 3\(^{2019}\)) ⋮ 13
Vậy chứng minh A chia hết cho 13 là điều không thể.

1, AAA
=Ax100+Ax10+A
=Ax(100+10+1)
=Ax111
Vì 111 chia hết cho 37
=> Ax111 chia hết cho 37
hay AAA chia hết cho 37
2,AB-BA
=(AX10+B)-(BX10+A)
=AX10+B-BX10-A
=(AX10-A)+(B-BX10)
=AX(10-1)+BX(1-10)
=AX9+BX(-9)
=AX9+(-B)X9
=9X[A+(-B)]
Vì 9 chia hết cho 9=>9x[A+(-B)] chia hết cho 9
hay AB-BA chia hết cho 9
Nhớ tick cho mik nha

1: \(A=2+2^2+2^3+\cdots+2^{100}\)
=>\(2A=2^2+2^3+2^4+\cdots+2^{101}\)
=>\(2A-A=2^2+2^3+2^4+\cdots+2^{101}-2-2^2-2^3-\cdots-2^{100}\)
=>\(A=2^{101}-2\)
2: \(B=1+5+5^2+5^3+\cdots+5^{150}\)
=>\(5B=5+5^2+5^3+\cdots+5^{151}\)
=>\(5B-B=5+5^2+5^3+\cdots+5^{151}-1-5-5^2-\cdots-5^{150}\)
=>\(4B=5^{151}-1\)
=>\(B=\frac{5^{151}-1}{4}\)
3: \(C=3+3^2+\cdots+3^{1000}\)
=>\(3C=3^2+3^3+\cdots+3^{1001}\)
=>\(3C-C=3^2+3^3+\cdots+3^{1001}-3-3^2-\cdots-3^{1000}\)
=>\(2C=3^{1001}-3\)
=>\(C=\frac{3^{1001}-3}{2}\)
Câu 1:
A = 2 + 2\(^2\) + 2\(^3\) + ... + 2\(^{100}\)
2A = 2\(^2\) + 2\(^3\) + ... + 2\(^{100}\) + 2\(^{101}\)
2A - A = (2\(^2\) + 2\(^3\) + ... + 2\(^{100}\)+ 2\(^{101}\)) -(2 + 2\(^2\) + 2\(^3\) + ... + 2\(^{100}\))
A = 2\(^2\) + 2\(^3\) + ... + 2\(^{100}\)+ 2\(^{101}\) - 2 - 2\(^2\) -2\(^3\) - ... - 2\(^{100}\)
A = (2\(^2\) - 2\(^2\)) + (2\(^3\) - 2\(^3\)) + ... + (2\(^{100}\) - 2\(^{100}\)) + (2\(^{101}\) - 2)
A = 0 + 0 + 0 + ... + 0 + 2\(^{101}\) - 2
A = 2\(^{101}\) - 2

Bài 2:
+) nếu người 1 và người 2 đội mũ trắng => người 3 sẽ nói mình đội mũ đen vì chỉ có 2 mũ trắng, mà người 3 ko lên tiếng
=> người 1 và người 2 đều đội mũ đen hoặc 1 đen 1 trắng
+) ông thứ 2 cũng nghĩ như ông thứ nhất nhưng không nói gì => ông thứ nhất chắc chắn phải đội mũ đen
nói thiệt chứ thằng Bảo nói chưa logic lắm nên suy ra mik ko hiểu
BÀI 1 dễ òi nên k giải nữa nha, chỉ cần ghép các số ( 1;2;3 ) số đầu, liên tiếp dần là đc nha bạn.
Bài 2:
\(8^4\cdot16^5=\left(2^3\right)^4\cdot\left(2^4\right)^5=2^{12}\cdot2^{20}=2^{32}\)
\(5^{40}\cdot125^7\cdot625^3=5^{40}\cdot\left(5^3\right)^7\cdot\left(5^4\right)^3=5^{40}\cdot5^{21}\cdot5^{12}=5^{73}\)
\(27^4\cdot81^{10}=\left(3^3\right)^4\cdot\left(3^4\right)^{10}=3^{12}\cdot3^{40}=3^{52}\)
\(10^3\cdot100^5\cdot1000^4=10^3\cdot\left(10^2\right)^5\cdot\left(10^3\right)^4=10^3\cdot10^{10}\cdot10^{12}=10^{25}\)
bạn à phải trả lời tất thì mình mới k nha bạn thông cảm