Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow\left\{{}\begin{matrix}x+2y=m\\4x-2y=2m+2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{3m+2}{5}\\y=\frac{m-1}{5}\end{matrix}\right.\)
Để x; y là độ dài cạnh tam giác \(\Rightarrow\left\{{}\begin{matrix}x>0\\y>0\end{matrix}\right.\) \(\Rightarrow m>1\)
Áp dụng định lý Pitago ta có:
\(x^2+y^2=5\Leftrightarrow\left(\frac{3m+2}{5}\right)^2+\left(\frac{m-1}{5}\right)^2=5\)
\(\Leftrightarrow10m^2+10m-120=0\) \(\Rightarrow\left[{}\begin{matrix}m=3\\m=-4< 1\left(l\right)\end{matrix}\right.\)

Coi PT thứ nhất là PT(1) và PT thứ 2 là PT(2)
a)
Từ PT$(2)\Rightarrow y=18-5x$
Thế vào PT$(1)$: $3x-2(18-5x)=5$
$\Leftrightarrow 13x=41\Leftrightarrow x=\frac{41}{13}$
\(y=18-5x=18-5.\frac{41}{13}=\frac{29}{13}\)
Vậy.......
b)
PT\((1)\Rightarrow y=2x-8\)
Thế vào $PT(2)\Rightarrow$ \(x+3(2x-8)=10\)
$\Leftrightarrow 7x=34\Rightarrow x=\frac{34}{7}$
$y=2x-8=2.\frac{34}{7}-8=\frac{12}{7}$
Vậy........
c)
HPT \(\Leftrightarrow \left\{\begin{matrix} 12x-9y=6\\ 12x-16y=-8\end{matrix}\right.\)
Từ PT$(1)\Rightarrow 12x=9y+6$
Thế vào PT$(2)\Rightarrow 9y+6-16y=-8$
$\Leftrightarrow y=2$
$x=\frac{9y+6}{12}=\frac{9.2+6}{12}=2$
Vậy.........
d)
HPT \(\Leftrightarrow \left\{\begin{matrix} 10x+25y=65\\ 10x-6y=-28\end{matrix}\right.\)
Từ PT$(1)\Rightarrow 10x=65-25y$
Thế vào PT$(2)\Rightarrow 65-25y-6y=-28$
$\Leftrightarrow y=3$
$x=\frac{65-25y}{10}=\frac{65-25.3}{10}=-1$
Vậy........

1) \(\left\{{}\begin{matrix}4x+y=2\\8x+3y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2-4x\\8x+3\left(2-4x\right)=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{4}\\y=1\end{matrix}\right.\)
2) 2 pt 3 ẩn không giải được.
3) \(\left\{{}\begin{matrix}3x+2y=6\\x-y=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=x-2\\3x+2\left(x-2\right)=6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)
4) \(\left\{{}\begin{matrix}2x-3y=1\\-4x+6y=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{3y+1}{2}\\-4\cdot\frac{3y+1}{2}+6y=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\varnothing\\x=\varnothing\end{matrix}\right.\)
5) \(\left\{{}\begin{matrix}2x+3y=5\\5x-4y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{-3y+5}{2}\\5\cdot\frac{-3y+5}{2}-4y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=1\end{matrix}\right.\)
6) \(\left\{{}\begin{matrix}3x-y=7\\x+2y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=3x-7\\x+2\left(3x-7\right)=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)
7) \(\left\{{}\begin{matrix}x+4y=2\\3x+2y=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2-4y\\3\left(2-4y\right)+2y=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\frac{1}{5}\\x=\frac{6}{5}\end{matrix}\right.\)
8) \(\left\{{}\begin{matrix}-x-y=2\\-2x-3y=9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-x-2\\-2x-3\left(-x-2\right)=9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-5\end{matrix}\right.\)
9) \(\left\{{}\begin{matrix}2x-3y=2\\-4x+6y=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{3y+2}{2}\\-4\cdot\frac{3y+2}{2}+6y=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\varnothing\\x=\varnothing\end{matrix}\right.\)

Bài 1 : https://hoc24.vn/hoi-dap/question/944344.html
Bài 2 : https://hoc24.vn/hoi-dap/question/944356.html
Bài 3 :
- Xét phương trình hoành độ giao điểm (d), (d2) ta được :
\(2x+1=x+2\)
=> \(2x-x=2-1\)
=> \(x=1\)
- Thay x =1 vào phương trình (d) ta được : \(y=2+1=3\)
- Thay x = 1, y = 3 vào phương trình (d1) ta được :
\(3.2+1=7\) ( luôn đúng )
=> x = 1, y = 3 là nghiệm của phương trình .
Vậy 3 đường thẳng trên đồng quy tại 1 điểm ( 1; 3 )
Bài 4 :
- Để phương trình có nghiệm duy nhất thì : \(\frac{3}{m-1}\ne\frac{m}{2}\)
=> \(m\left(m-1\right)\ne6\)
=> \(m^2-m-6\ne0\)
=> \(\left(m-\frac{1}{2}\right)^2-\frac{25}{4}\ne0\)
=> \(\left[{}\begin{matrix}m-\frac{1}{2}\ne\sqrt{\frac{25}{4}}\\m-\frac{1}{2}\ne-\sqrt{\frac{25}{4}}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}m\ne\sqrt{\frac{25}{4}}+\frac{1}{2}\\m\ne-\sqrt{\frac{25}{4}}+\frac{1}{2}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}m\ne3\\m\ne-2\end{matrix}\right.\)
Vậy để hệ phương trình có duy nhất 1 nghiệm thì \(m\ne-2,m\ne3\)
Vì \(\dfrac{2}{5}\ne\dfrac{1}{-3}\)
nên hệ có nghiệm duy nhất
\(\left\{{}\begin{matrix}2x+y=5\\5x-3y=-11m+29\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}6x+3y=15\\5x-3y=-11m+29\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}11x=15-11m+29=44-11m\\2x+y=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-m+4\\y=5-2\left(-m+4\right)=5+2m-8=2m-3\end{matrix}\right.\)
Để x,y là độ dài hai cạnh góc vuông có cạnh huyền bằng \(\sqrt{10}\) thì \(x^2+y^2=10\)
=>\(\left(-m+4\right)^2+\left(2m-3\right)^2=10\)
=>\(m^2-8m+16+4m^2-12m+9=10\)
=>\(5m^2-20m+25-10=0\)
=>\(m^2-4m+3=0\)
=>(m-1)(m-3)=0
=>\(\left[{}\begin{matrix}m=1\\m=3\end{matrix}\right.\)