Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Chứng minh được BF = DH \Rightarrow⇒ BFDH là hình bình hành (vì BF // DH). Do đó O thuộc FH (vì O phải là giao điểm của hai đường chéo).
b) Dễ thấy \Delta BEF=\Delta CFGΔBEF=ΔCFG (cgv – cgv) nên EF = FG.
Tương tự, FG = GH, GH = HE \Rightarrow⇒ EF = FG = GH = HE. Suy ra EFGH là hình vuông.
Tương tự phần a) ta chứng minh được O thuộc EG. Từ đó, O là giao điểm hai đường chéo của hình vuông EFGH nên O cách đều E, F, G, H.
c) BE=BC .\cot{{60}^\circ}=\frac{6\sqrt3}{3}=2\sqrt3BE=BC .cot60∘=363=23.
a) Chứng minh được BF = DH \Rightarrow⇒ BFDH là hình bình hành (vì BF // DH). Do đó O thuộc FH (vì O phải là giao điểm của hai đường chéo).
b) Dễ thấy \Delta BEF=\Delta CFGΔBEF=ΔCFG (cgv – cgv) nên EF = FG.
Tương tự, FG = GH, GH = HE \Rightarrow⇒ EF = FG = GH = HE. Suy ra EFGH là hình vuông.
Tương tự phần a) ta chứng minh được O thuộc EG. Từ đó, O là giao điểm hai đường chéo của hình vuông EFGH nên O cách đều E, F, G, H.
c) BE=BC .\cot{{60}^\circ}=\frac{6\sqrt3}{3}=2\sqrt3BE=BC .cot60∘=363=23.

a.
ABCD là hình vuông nên \(\angle NBE=45^0\Rightarrow\angle NBE=\angle NAE=45^0\)
\(\Rightarrow NABE\) nội tiếp
\(\Rightarrow\angle AEN=\angle ABN=45^0\) (cùng chắn AN)
Tương tự ta có \(\angle MAF=\angle MDF=45^0\) nên MADF nội tiếp
\(\Rightarrow\angle AFM=\angle ADM=45^0\) (cùng chắn AM)
\(\Rightarrow\angle AEN=\angle AFM\) hay \(\angle MEN=\angle MFN\)
=>MNFE nội tiếp
b.
Theo cm câu a, do NABE nội tiếp mà ∠ABE=90 độ \(\Rightarrow\angle ANE=180^0-\angle ABE=90^0\)
=>EN⊥AF
Tương tự ta có MADF nội tiếp =>FM⊥AE
=>H là trực tâm tam giác AEF =>AH⊥EF tại K
=>Các điểm M, K, D cùng nhìn AF dưới 1 góc vuông nên 5 điểm A,M,K,F,D cùng thuộc 1 đường tròn.
=>∠KDM=∠KAM (cùng chắn KM) (1)
M và N cùng nhìn AH dưới 1 góc vuông nên AMHN nội tiếp
=>∠KAM=∠ENB (cùng chắn MH) (2)
Do NABE nt (cmt) nên ∠ENB=∠EAB (cùng chắn EB) (3)
(1),(2),(3) =>∠KDM=∠EAB
Mà ∠KDM và ∠EAB cùng chắn BL =>ABLD nội tiếp
Lại có ABCD nội tiếp => 5 điểm A,B,L,C,D cùng nằm trên 1 đường tròn

Xét ΔABD có AB=AD và góc BAD=60 độ
nên ΔABD đều
Ta có: ΔDAB cân tại D
mà DE là đường trung tuyến
nên DE vuông góc với BE
=>E nằm trên đường tròn đường kính BD(1)
Ta có:ΔBAD cân tại B
ma BH là đường trung tuyến
nên BH vuông góc với HD
=>H nằm trên đường tròn đường kính BD(2)
Xét ΔCBD có CB=CD và góc BCD=60 độ
nên ΔCBD đều
Ta có: ΔBDC cân tại D
mà DF là đường trung tuyến
nen DF vuông góc với BF
=>F nằm trên đường tròn đường kính BD(3)
Ta có: ΔBDC cân tại B
mà BG là đường trung tuyến
nên BG vuông góc với GD
=>G nằm trên đường tròn đường kính BD(4)
Từ (1), (2), (3) và (4) suy ra E,B,F,G,D,H cùng nằm trên 1 đường tròn

bạn tự vẽ hình hộ mình
a,Vì AE cắt EF tại E nên theo tính chất hai tiếp tuyến bằng nhau =>EA=EC
BF CẮT EF tại F nên theo tính chất hai tiếp tuyến bằng nhau =>BF=CF
Ta có:
EF= EC+CF=EA+BF=>ĐIỀU phải chứng minh
b, Vì Ax là tiếp tuyến => OA⊥AD=>▲DAB vuông tại A
Ap dụng hệ thức lượng trong tam giác vuông vào tam giác DAB ta có:
AD2=DC*DB=>Điều phải chứng minh
Giải:
đề có vấn đề: Thứ nhất:
Lần lượt các điểm EF vừa hátTrên các cạnh AB, BC, CD, DA của HCN ABCD
Thứ 2:
Lần lượt các điểm EF vừa hátTrên các cạnh AB, BC, CD, DA của HCN ABCD lấy lần lượt các điểm E, F,G, H sao cho AE=BF=DG=DH. AC, BD cắt nhau tại O