\(^{x^2+2⋮xy+1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2018

Ta có\(x^2+2⋮xy+1\)

\(\Rightarrow\left(x^2+2\right)y⋮xy+1\)

\(\Leftrightarrow x^2y+2y⋮xy+1\)

\(\Leftrightarrow x^2y+x-x+2y⋮xy+1\)

\(\Leftrightarrow x\left(xy+1\right)+2y-x⋮xy+1\)

\(x^2+2⋮xy+1\Leftrightarrow2y-x⋮xy+1\)

Mà x, y nguyên dương nên \(2y-x\ge xy+1\)

\(\Rightarrow xy+1-2y+x\le0\)

\(\Leftrightarrow\left(xy-2y\right)+x-2+3\le0\)

\(\Leftrightarrow y\left(x-2\right)+x-2\le-3\)

\(\Leftrightarrow\left(y+1\right)\left(x-2\right)\le-3\) 

Để (y+1)(x-2) âm thì 1 trong 2 thừa số phải âm mà y+1\(\ge0\left(y\inℕ^∗\right)\)

suy ra x-2 âm và phải lớn hơn -4.Tuy nhiên x nguyên dương nên x-2 chỉ có thể =-1 khi đó x=1 và 

y+1=3\(\Rightarrow y=2\)

Thử lại ta được \(1^2+2⋮1.2+1\)

Vậy x=1;y=2

1 tháng 5 2020

Bạn tham khảo sol ở đây nhé !

IMO ShortList 1998, number theory problem 1

Hơi bị gắt đó,IMO 1998 ( mặc dù đề lệch 1 tẹo so với IMO )

Rảnh thì tớ sẽ sol cho các bạn xem,cậu vào TKHĐ của tớ là thấy link nhé !!!

20 tháng 9 2016

Ta có 2x + 1 = y2 

<=> 2x = (y - 1)(y + 1)

Đặt  y - 1 = 2n (  n > 0)

=> 2x = 2n (2n + 2)

Với n = 1 thì y = 3; x = 3

Với n \(\ge2\) thì 2​​n+1 > 2n-1 \(\ge2\)

Ta có 2x = 2n+1 (2n-1 + 1)

Ta thấy (2n-1 + 1) là 1 số lẻ nên không tồn tại n \(\ge2\)thỏa bài toán

Vậy x = y = 3

Mình không biết đúng không. Bạn kiểm tra lại nha

20 tháng 9 2016

\(2^x=\left(y-1\right)\left(y+1\right)\)

Mà ( y-1 ) và  ( y +1 ) là 2 số chẵn liên tiếp  tích là lũy thừa của 2 ( ước nguyên tố 2)

=> chỉ có  (y-1)(y+1) = 2.4  thỏa mãn 

=> y =3 => x =3

25 tháng 4 2015

Tu de bai suy ra 2y+2x=xy<=>...<=>y(2-x)= -2x<=>y=2x/(x-2)<=>y=(2x-4+4)/(x-2)<=>y=2+4/(x-2)

vi x la so nguyen Dưỡng nen x-2 la so nguyen  duong va la ước cua 4 => x-2 =1 hoặc x-2= 4 => x=3 hoac x=6 

Voi x=3 => y= 6

voi x=6=> y=3

vay cac cap so nguyen duong (x;y) can tim la (3;6); (6;3)

26 tháng 4 2015

.....

Sau khi chi ra x-2 la uoc nguyen duong cua 4

 Co 3  Truong hop

x-2 =1; x-2=2;x-2=4

Tu do tinh duoc x=3;x=4;x=6. Suy ra cac gia tri tuong ung cua y

co 3 cap so nguyen duong x, y can Tim:(3;6);(4 ;4);(6;3)

\(\frac{x^2}{y+1}+\frac{y+1}{4}\ge x;\frac{y^2}{z+1}+\frac{z+1}{4}\ge y;\frac{z^2}{x+1}+\frac{x+1}{4}\ge z\)

\(\Rightarrow VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{4}.2=\frac{3}{2}\)

4 tháng 3 2020

có \(\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}\)

=>\(\hept{\begin{cases}x⋮y\\y⋮x\end{cases}}\)=>x=y

Thay y=x vào A:\(\frac{x^2+2019x^2}{x\cdot x}=\frac{2020\cdot x^2}{x^2}=2020\)

Vậy A=2020

4 tháng 3 2020

Sao nghe đơn giản quá thế @@ 

27 tháng 5 2017

\(\Leftrightarrow3x^2+x\left(2y^2-y-3\right)-\left(2y^2-y-3\right)=0\)

đặt \(\left(2y^2-y-3\right)=m\)với m là số tự nhiên nên phương trình trở thành

\(\Leftrightarrow3x^2+mx-m=0\)

có \(\Delta=m^2+12m=\left(m+6\right)^2-36=k^2\)vì x,y nguyên nên \(\Delta\)là số chính phương

\(\Leftrightarrow\left(m+6-k\right)\left(m+6+k\right)=36\)

m+6-k và m+6+k là ước của 36 ta xét các trường hợp có thể sảy ra (36,6);(18,2);(12,3);(9,4);(6,6).

  1. \(\hept{\begin{cases}m+6+k=36\\m+6-k=1\end{cases}}\Leftrightarrow2m=25\)không thỏa mãn
  2. \(\hept{\begin{cases}m+6+k=18\\m+6-k=2\end{cases}}\Leftrightarrow2m=8\Leftrightarrow m=4\)\(\Rightarrow\Delta=64;2y^2-y-3=4\Leftrightarrow2y^2-y-7=0\)\(\Leftrightarrow\Delta_1=1^2+2.4.7=57\) loại
  3. \(\hept{\begin{cases}m+6+k=12\\m+6-k=3\end{cases}}\Leftrightarrow2m=3\)loại
  4. \(\hept{\begin{cases}m+6+k=9\\m+6-k=4\end{cases}}\Leftrightarrow2m=1\)loại
27 tháng 5 2017

5.\(\hept{\begin{cases}m+6+k=6\\m+6-k=6\end{cases}}\Leftrightarrow2m=0\Leftrightarrow m=0\)

\(2y^2-y-3=0\Leftrightarrow\orbr{\begin{cases}y=-1\\y=\frac{3}{2}\end{cases}}\)\(\Rightarrow y=-1\)

thay m=0 có \(\Delta=0\)phương trình ban đầu trở thành

\(3x^2=0\Leftrightarrow x=0\)

vậy cặp (x,y) nguyên là (0,-1)