Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vì x < y nên \(\frac{a}{m}< \frac{b}{m}\) suy ra a < b
=> a + b > 2a => \(z=\frac{a+b}{2m}>\frac{2a}{2m}=\frac{a}{m}=x\) (1)
Từ a < b => a + b < 2b => \(z=\frac{a+b}{2m}< \frac{2b}{2m}=\frac{b}{m}=y\) (2)
Từ (1) ; (2) => x < z < y (đpcm)

Vì \(x< y\Rightarrow\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\) (*)
Thêm ab vào hai vế của (*) : ad + ab < bc + ab
=> a(b+d) < b(a+c)
=> \(\frac{a}{b}< \frac{a+c}{b+d}\)
=> x < z (1)
Thêm cd vào hai vế của (*): ad + cd < bc + cd
=> d(a + c) < c(b + d)
=> \(\frac{a+c}{b+d}< \frac{c}{d}\)
=> z < y (2)
Từ (1) và (2) => x < z < y
Vì x<y⇒ab <cd ⇒ad<bc (*)
Thêm ab vào hai vế của (*) : ad + ab < bc + ab
=> a(b+d) < b(a+c)
=> ab <a+cb+d
=> x < z (1)
Thêm cd vào hai vế của (*): ad + cd < bc + cd
=> d(a + c) < c(b + d)
=> a+cb+d <cd
=> z < y (2)
Từ (1) và (2) => x < z < y

a) \(x^2y>0\) . Đúng, bởi vì theo đề ta có x < 0 hay x âm. Nhưng với số mũ y chẵn (2,4,6,...) thì khi đó xy (theo đề bài ở đây là x2) thì x2 dương hay x2 > 0 do vậy kết hợp với y > 0 ta có |\(x^2y>0\)
b) x + y = 0 . Đúng do |x| = |y| nên kết hợp với đề bài ta có:|-x|=y
Suy ra -x + y =
c) xy < 0 (hay xy âm) đúng vì x,y trái dấu. Theo quy tắc ta có trái dấu thì âm, đồng dấu thì dương.
d)tương tự như các bài trên
e) tương tự các bài trên. Mình lười làm òi!
a) x2y>0x2y>0 . Đúng, bởi vì theo đề ta có x < 0 hay x âm. Nhưng với số mũ y chẵn (2,4,6,...) thì khi đó xy (theo đề bài ở đây là x2) thì x2dương hay x2 > 0 do vậy kết hợp với y > 0 ta có |x2y>0x2y>0
b) x + y = 0 . Đúng do |x| = |y| nên kết hợp với đề bài ta có:|-x|=y
Suy ra -x + y =
c) xy < 0 (hay xy âm) đúng vì x,y trái dấu. Theo quy tắc ta có trái dấu thì âm, đồng dấu thì dương.

Vì \(\frac{a}{b}< \frac{c}{d}\)nên ad < bc (1)
Xét tích a(b + d) = ab + ad (2)
b(a + c) = ba + bc (3)
Từ (1);(2);(3) suy ra a(b + d) < b(a + c) => \(\frac{a}{b}< \frac{a+c}{b+d}\) (4)
Tương tự ta có \(\frac{a+c}{b+d}< \frac{c}{d}\) (5)
Từ (4);(5) suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)hay x < z < y

Theo đề bài ta có x = \(\frac{a}{m}\) , y = \(\frac{b}{m}\)( a, b, m \(\in\) Z, m > 0 )
Vì x < y nên ta suy ra a < b
Ta có : x = \(\frac{2a}{2m}\), y = \(\frac{2b}{2m}\), , z = \(\frac{a+b}{2m}\)
Vì a < b => a + a < a +b => 2a < a + b
Do 2a< a +b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a+b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z< y
- a) x > 0:Sai. Vì x là một số âm (-12/23 < 0) nên x không thể lớn hơn 0.
- b) x < y:Đúng. Vì x = -12/23 và y = 1/23, ta có -12 < 1, nên -12/23 < 1/23.
- c) x + y = -11/23:Đúng. Ta thực hiện phép cộng: x + y = -12/23 + 1/23 = (-12 + 1)/23 = -11/23.
- d) x × y > 0:Sai. Vì x là số âm và y là số dương, kết quả của phép nhân x × y sẽ là một số âm (âm nhân dương bằng âm). Số âm không thể lớn hơn 0.
Tóm tắt:Tk
a: Sai
b: Đúng
c: \(x+y=\frac{-12}{23}+\frac{1}{23}=\frac{-12+1}{23}=-\frac{11}{23}\)
=>Đúng
d: Vì x và y trái dấu
nên xy<0
=>Sai