
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 5:
a:
AMCD là hình vuông
=>CM⊥MA tại M
=>CM⊥AB tại M
MBFE là hình vuông
=>MB⊥ME tại M
=>ME⊥AB tại M
mà CM⊥AB tại M
và CM,ME có điểm chung là M
nên M,C,E thẳng hàng
Gọi K là giao điểm của AC và BE
AMCD là hình vuông
=>AC là phân giác của góc DAM
=>\(\hat{CAM}=\frac12\cdot\hat{DAM}=45^0\)
MBFE là hình vuông
=>BE là phân giác của góc MBF
=>\(\hat{MBE}=\hat{FBE}=\frac12\cdot\hat{MBF}=45^0\)
Xét ΔKAB có \(\hat{KAB}+\hat{KBA}=45^0+45^0=90^0\)
nên ΔKAB vuông tại K
=>AK⊥EB tại K
Xét ΔEAB có
AK,EM là các đường cao
AK cắt EM tại C
Do đó: C là trực tâm của ΔEAB
=>BC⊥AE
Bài 4:
a: Xét ΔADI vuông tại D và ΔAHI vuông tại H có
AI chung
\(\hat{DAI}=\hat{HAI}\)
Do đó: ΔADI=ΔAHI
=>AD=AH
mà AD=AB
nên AH=AB
Xét ΔAHK vuông tại H và ΔABK vuông tại B có
AK chung
AH=AB
Do đó: ΔAHK=ΔABK
b: ΔAHK=ΔABK
=>\(\hat{HAK}=\hat{BAK}\)
=>AK là phân giác của góc HAB
=>\(\hat{HAB}=2\cdot\hat{HAK}\)
\(\hat{DAH}+\hat{BAH}=\hat{BAD}\) (tia AH nằm giữa hai tia AB và AD)
\(\Rightarrow2\left(\hat{IAH}+\hat{HAK}\right)=90^0\)
=>\(2\cdot\hat{IAK}=90^0\)
=>\(\hat{IAK}=45^0\)

\(\frac{2a-b}{a-b}+\frac{-a}{a-b}\)
\(=\frac{2a-b+\left(-a\right)}{a-b}\)
\(=\frac{a-b}{a-b}\)
=1

Bài 13:
a: \(\left\lbrack5\left(x-2y\right)^3\right\rbrack:\left(5x-10y\right)\)
\(=\frac{5\left(x-2y\right)^3}{5\cdot\left(x-2y\right)}\)
\(=\left(x-2y\right)^2\)
b: \(\left\lbrack5\left(a-b\right)^3+2\left(a-b\right)^2\right\rbrack:\left(b-a\right)^2\)
\(=\frac{5\left(a-b\right)^3+2\left(a-b\right)^2}{\left(a-b\right)^2}\)
\(=\frac{5\left(a-b\right)^3}{\left(a-b\right)^2}+\frac{2\left(a-b\right)^2}{\left(a-b\right)^2}\)
=5(a-b)+2
c: Sửa đề: \(\left(x^3+8y^3\right):\left(x+2y\right)\)
\(=\frac{\left(x+2y\right)\left(x^2-2xy+4y^2\right)}{x+2y}\)
\(=x^2-2xy+4y^2\)
Bài 11:
a: Gọi ba số tự nhiên liên tiếp lần lượt là a;a+1;a+2
Tích của hai số sau lớn hơn tích của hai số đầu là 52 nên ta có:
\(\left(a+1\right)\left(a+2\right)-a\left(a+1\right)=52\)
=>\(\left(a+1\right)\left(a+2-a\right)=52\)
=>2(a+1)=52
=>a+1=26
=>a=25
Vậy: ba số tự nhiên liên tiếp cần tìm là 25;25+1=26; 25+2=27
b: a chia 5 dư 1 nên a=5x+1
b chia 5 dư 4 nên b=5y+4
ab+1
\(=\left(5x+1\right)\left(5y+4\right)+1\)
=25xy+20x+5y+4+1
=25xy+20x+5y+5
=5(5xy+4x+y+1)⋮5
c: \(Q=2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)
\(=2n^3+2n^2-2n^3-2n^2+6n\)
=6n⋮6
Bài 8:
a: \(A=x^2+2xy-3x^3+2y^3+3x^3-y^3\)
\(=x^2+2xy-3x^3+3x^3+2y^3-y^3\)
\(=x^2+2xy+y^3\)
Khi x=5;y=4 thì \(A=5^2+2\cdot5\cdot4+4^3=25+40+64=129\)
b: x=-1;y=-1
=>xy=1
\(x^2y^2=\left(xy\right)^2=1^2=1;x^4y^4=\left(xy\right)^4=1^4=1\) ; \(x^6y^6=\left(xy\right)^6=1^6=1;x^8y^8=\left(xy\right)^8=1^8=1\)
=>B=1-1+1-1+1=1

Bằng hình vẽ này thì câu hỏi ko trả lời được đâu em.
Hai tam giác vẽ chẳng chính xác gì hết, giao điểm cũng ko rõ ràng vị trí.

bài 13:
a: Xét tứ giác AMHN có \(\hat{AMH}=\hat{ANH}=\hat{MAN}=90^0\)
nên AMHN là hình chữ nhật
b: Xét ΔAMH vuông tại M và ΔAMD vuông tại M có
AM chung
MH=MD
Do đó: ΔAMH=ΔAMD
=>\(\hat{MAH}=\hat{MAD}\)
=>AM là phân giác của góc HAD
=>\(\hat{HAD}=2\cdot\hat{HAM}\)
Xét ΔANH vuông tại N và ΔANE vuông tại N có
AN chung
NH=NE
Do đó: ΔANH=ΔANE
=>\(\hat{NAH}=\hat{NAE}\)
=>AN là phân giác của góc HAE
=>\(\hat{HAE}=2\cdot\hat{HAN}\)
Ta có: \(\hat{DAE}=\hat{DAH}+\hat{EAH}\)
\(=2\left(\hat{HAN}+\hat{HAM}\right)=2\cdot\hat{NAM}=180^0\)
=>D,A,E thẳng hàng
c: ΔAHM=ΔADM
=>AH=AD
ΔANH=ΔANE
=>AH=AE
Xét ΔAHB và ΔADB có
AH=AD
\(\hat{HAB}=\hat{DAB}\)
AB chung
Do đó: ΔAHB=ΔADB
=>\(\hat{AHB}=\hat{ADB}\)
=>\(\hat{ADB}=90^0\)
=>BD⊥AD
=>BD⊥ DE(2)
Xét ΔAHC và ΔAEC có
AH=AE
\(\hat{HAC}=\hat{EAC}\)
AC chung
Do đó: ΔAHC=ΔAEC
=>\(\hat{AHC}=\hat{AEC}\)
=>\(\hat{AEC}=90^0\)
=>CE⊥ DE(1)
Từ (1),(2) suy ra BD//CE
=>BDEC là hình thang
d: Xét ΔHED có
N,M lần lượt là trung điểm của HE,HD
=>NM là đường trung bình của ΔHED
=>ED=2MN=MN+AH
Bài 12:
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hình bình hành
Hình bình hành ABDC có \(\hat{BAC}=90^0\)
nên ABDC là hình chữ nhật
b: ABDC là hình chữ nhật
=>AB//DC và AB=DC
AB//DC
=>DC//BE
ta có: AB=DC
AB=BE
Do đó: DC=BE
Xét tứ giác BCDE có
BE//DC
BE=DC
Do đó: BCDE là hình bình hành
c: DK=2BK
DK+BK=DB
Do đó: DB=2BK+BK=3BK
=>\(\frac{DK}{DB}=\frac23\)
Xét ΔADE có
DB là đường trung tuyến
\(DK=\frac23DB\)
Do đó: K là trọng tâm của ΔADE
Xét ΔADE có
K là trọng tâm
M là trung điểm của AD
Do đó: E,K,M thẳng hàng
=>EK,AD,BC đồng quy

bạn lưu ảnh rồi gửi qua file đi ạ chứ bn cóp sang thì ko hiện ảnh mất rồi
Bài 3:
a: Ta có: \(\hat{FAH}+\hat{FAB}+\hat{HAD}+\hat{BAD}=360^0\)
=>\(\hat{FAH}+\hat{DAB}=360^0-90^0-90^0=180^0\)
mà \(\hat{DAB}+\hat{ADC}=180^0\) (ABCD là hình bình hành)
nên \(\hat{FAH}=\hat{CDA}\)
Ta có: ABEF là hình vuông
=>AB=BE=FE=AF
mà AB=CD
nên AB=CD=BE=FE=AF
Ta có: ADGH là hình vuông
=>AD=DG=GH=HA
mà AD=BC
nên BC=AD=DG=GH=HA
Xét ΔFAH và ΔCDA có
FA=CD
\(\hat{FAH}=\hat{CDA}\)
AH=AD
Do đó: ΔFAH=ΔCDA
=>FH=CA
ΔFAH=ΔCDA
=>\(\hat{FHA}=\hat{CAD}\)
Gọi K là giao điểm của AC và FH
Ta có: \(\hat{KAH}+\hat{HAD}+\hat{DAC}=180^0\)
=>\(\hat{KAH}+\hat{DAC}=180^0-90^0=90^0\)
=>\(\hat{KAH}+\hat{FHA}=90^0\)
=>ΔAKH vuông tại K
=>AK⊥FH tại K
=>CA⊥FH tại K
b: Ta có: \(\hat{CDG}=\hat{CDA}+\hat{ADG}=\hat{CDA}+90^0\)
\(\hat{EBC}=\hat{EBA}+\hat{CBA}=90^0+\hat{CBA}\)
mà \(\hat{CDA}=\hat{CBA}\) (ABCD là hình bình hành)
nên \(\hat{CDG}=\hat{EBC}\)
Xét ΔCDG và ΔEBC có
CD=EB
\(\hat{CDG}=\hat{EBC}\)
DG=BC
Do đó: ΔCDG=ΔEBC
=>CG=EC và \(\hat{DCG}=\hat{BEC};\hat{DGC}=\hat{BCE}\)
\(\hat{GCE}=\hat{DCB}-\hat{DCG}-\hat{BCE}\)
\(=\hat{DCB}-\hat{BEC}-\hat{BCE}=180^0-\hat{ADC}-\left(180^0-\hat{EBC}\right)=\hat{EBC}-\hat{ADC}\)
\(=\hat{EBA}+\hat{CBA}-\hat{ADC}=\hat{EBA}=90^0\)
=>ΔGCE vuông cân tại C
Bài 2:
a: BO là phân giác của góc ABD
=>\(\hat{ABO}=\hat{DBO}=\frac12\cdot\hat{ABD}\) (1)
CO là phân giác của góc ACE
=>\(\hat{ACO}=\hat{OCE}=\frac12\cdot\hat{ACE}\left(2\right)\)
Ta có: \(\hat{ABD}+\hat{BAC}=90^0\) (ΔADB vuông tại D)
\(\hat{ACE}+\hat{BAC}=90^0\) (ΔAEC vuông tại E)
Do đó: \(\hat{ABD}=\hat{ACE}\left(3\right)\)
Từ (1),(2) suy ra \(\hat{ABO}=\hat{DBO}=\hat{ACO}=\hat{OCE}\)
Ta có: \(\hat{OBC}+\hat{OCB}\)
\(=\hat{OBD}+\hat{DBC}+\hat{OCE}+\hat{ECB}\)
\(=2\cdot\hat{OBD}+\hat{DBC}+\hat{ECB}=\hat{ABD}+90^0-\hat{ABC}+90^0-\hat{ACB}\)
\(=180^0-\hat{ABC}-\hat{ACB}+\hat{ABD}=\hat{BAC}+\hat{ABD}=90^0\)
=>ΔBOC vuông tại O
b: Xét ΔBMH có
BO là đường cao
BO là đường phân giác
Do đó: ΔBMH cân tại B
mà BO là đường cao
nên O là trung điểm của MH
Xét ΔCNK có
CO là đường cao
CO là đường phân giác
Do đó: ΔCNK cân tại C
mà CO là đường cao
nên O là trung điểm của NK
Xét tứ giác MNHK có
O là trung điểm chung của MH và NK
=>MNHK là hình bình hành
Hình bình hành MNHK có MH⊥NK
nên MNHK là hình thoi
Bài 3:
a: Ta có: \(\hat{F A H} + \hat{F A B} + \hat{H A D} + \hat{B A D} = 36 0^{0}\)
=>\(\hat{F A H} + \hat{D A B} = 36 0^{0} - 9 0^{0} - 9 0^{0} = 18 0^{0}\)
mà \(\hat{D A B} + \hat{A D C} = 18 0^{0}\) (ABCD là hình bình hành)
nên \(\hat{F A H} = \hat{C D A}\)
Ta có: ABEF là hình vuông
=>AB=BE=FE=AF
mà AB=CD
nên AB=CD=BE=FE=AF
Ta có: ADGH là hình vuông
=>AD=DG=GH=HA
mà AD=BC
nên BC=AD=DG=GH=HA
Xét ΔFAH và ΔCDA có
FA=CD
\(\hat{F A H} = \hat{C D A}\)
AH=AD
Do đó: ΔFAH=ΔCDA
=>FH=CA
ΔFAH=ΔCDA
=>\(\hat{F H A} = \hat{C A D}\)
Gọi K là giao điểm của AC và FH
Ta có: \(\hat{K A H} + \hat{H A D} + \hat{D A C} = 18 0^{0}\)
=>\(\hat{K A H} + \hat{D A C} = 18 0^{0} - 9 0^{0} = 9 0^{0}\)
=>\(\hat{K A H} + \hat{F H A} = 9 0^{0}\)
=>ΔAKH vuông tại K
=>AK⊥FH tại K
=>CA⊥FH tại K
b: Ta có: \(\hat{C D G} = \hat{C D A} + \hat{A D G} = \hat{C D A} + 9 0^{0}\)
\(\hat{E B C} = \hat{E B A} + \hat{C B A} = 9 0^{0} + \hat{C B A}\)
mà \(\hat{C D A} = \hat{C B A}\) (ABCD là hình bình hành)
nên \(\hat{C D G} = \hat{E B C}\)
Xét ΔCDG và ΔEBC có
CD=EB
\(\hat{C D G} = \hat{E B C}\)
DG=BC
Do đó: ΔCDG=ΔEBC
=>CG=EC và \(\hat{D C G} = \hat{B E C} ; \hat{D G C} = \hat{B C E}\)
\(\hat{G C E} = \hat{D C B} - \hat{D C G} - \hat{B C E}\)
\(= \hat{D C B} - \hat{B E C} - \hat{B C E} = 18 0^{0} - \hat{A D C} - \left(\right. 18 0^{0} - \hat{E B C} \left.\right) = \hat{E B C} - \hat{A D C}\)
\(= \hat{E B A} + \hat{C B A} - \hat{A D C} = \hat{E B A} = 9 0^{0}\)
=>ΔGCE vuông cân tại C
Bài 2:
a: BO là phân giác của góc ABD
=>\(\hat{A B O} = \hat{D B O} = \frac{1}{2} \cdot \hat{A B D}\) (1)
CO là phân giác của góc ACE
=>\(\hat{A C O} = \hat{O C E} = \frac{1}{2} \cdot \hat{A C E} \left(\right. 2 \left.\right)\)
Ta có: \(\hat{A B D} + \hat{B A C} = 9 0^{0}\) (ΔADB vuông tại D)
\(\hat{A C E} + \hat{B A C} = 9 0^{0}\) (ΔAEC vuông tại E)
Do đó: \(\hat{A B D} = \hat{A C E} \left(\right. 3 \left.\right)\)
Từ (1),(2) suy ra \(\hat{A B O} = \hat{D B O} = \hat{A C O} = \hat{O C E}\)
Ta có: \(\hat{O B C} + \hat{O C B}\)
\(= \hat{O B D} + \hat{D B C} + \hat{O C E} + \hat{E C B}\)
\(= 2 \cdot \hat{O B D} + \hat{D B C} + \hat{E C B} = \hat{A B D} + 9 0^{0} - \hat{A B C} + 9 0^{0} - \hat{A C B}\)
\(= 18 0^{0} - \hat{A B C} - \hat{A C B} + \hat{A B D} = \hat{B A C} + \hat{A B D} = 9 0^{0}\)
=>ΔBOC vuông tại O
b: Xét ΔBMH có
BO là đường cao
BO là đường phân giác
Do đó: ΔBMH cân tại B
mà BO là đường cao
nên O là trung điểm của MH
Xét ΔCNK có
CO là đường cao
CO là đường phân giác
Do đó: ΔCNK cân tại C
mà CO là đường cao
nên O là trung điểm của NK
Xét tứ giác MNHK có
O là trung điểm chung của MH và NK
=>MNHK là hình bình hành
Hình bình hành MNHK có MH⊥NK
nên MNHK là hình thoi