Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, \(9x^3y^2-15x^2y^3=3x^2y^2\cdot\left(3x-5y\right)\)
b,\(25x^2-49y^2=\left(5x\right)^2-\left(7y\right)^2\)
\(=\left(5x-7y\right)\cdot\left(5x+7y\right)\)
c,\(x^2y-xy^2-7x+7y=\left(x^2y-xy^2\right)-\left(7x-7y\right)\)
\(=xy\left(x-y\right)-7\left(x-y\right)\)
,\(=\left(x-y\right)\cdot\left(xy-7\right)\)
d, \(x^2-2xy+y^2-9z^2=\left(x^2-2xy+y^2\right)-9z^2\)
\(=\left(x-y\right)^2-9z^2\)
\(=\left(x-y+3z\right)\cdot\left(x-y-3z\right)\)
f) \(x^4-5x^2+4\)
\(=x^4-x^2-4x^2+4\)
\(=x^2\left(x^2-1\right)-4\left(x^2-1\right)\)
\(=\left(x^2-4\right)\left(x^2-1\right)\)
\(=\left(x+2\right)\left(x-2\right)\left(x-1\right)\left(x+1\right)\)

a) \(\left(\right. x + y \left.\right)^{3} - \left(\right. x + y \left.\right) \left(\right. x^{2} - x y + y^{2} \left.\right) = 3 x y \left(\right. x + y \left.\right)\)
Giải:
Bắt đầu với vế trái của phương trình:
\(\left(\right. x + y \left.\right)^{3} - \left(\right. x + y \left.\right) \left(\right. x^{2} - x y + y^{2} \left.\right)\)
Bước 1: Mở rộng \(\left(\right. x + y \left.\right)^{3}\):
\(\left(\right. x + y \left.\right)^{3} = x^{3} + 3 x^{2} y + 3 x y^{2} + y^{3}\)
Bước 2: Mở rộng \(\left(\right. x + y \left.\right) \left(\right. x^{2} - x y + y^{2} \left.\right)\):
\(\left(\right. x + y \left.\right) \left(\right. x^{2} - x y + y^{2} \left.\right) = x \left(\right. x^{2} - x y + y^{2} \left.\right) + y \left(\right. x^{2} - x y + y^{2} \left.\right)\)\(= x^{3} - x^{2} y + x y^{2} + y x^{2} - x y^{2} + y^{3}\)\(= x^{3} + y^{3} + \left(\right. y x^{2} - x^{2} y \left.\right) = x^{3} + y^{3}\)
Bước 3: Trừ các biểu thức:
\(\left(\right. x + y \left.\right)^{3} - \left(\right. x + y \left.\right) \left(\right. x^{2} - x y + y^{2} \left.\right) = \left(\right. x^{3} + 3 x^{2} y + 3 x y^{2} + y^{3} \left.\right) - \left(\right. x^{3} + y^{3} \left.\right)\)\(= 3 x^{2} y + 3 x y^{2}\)\(= 3 x y \left(\right. x + y \left.\right)\)
Vậy, phương trình đã đúng:
\(\left(\right. x + y \left.\right)^{3} - \left(\right. x + y \left.\right) \left(\right. x^{2} - x y + y^{2} \left.\right) = 3 x y \left(\right. x + y \left.\right)\)
b) \(B = \left(\right. 3 x + 2 \left.\right) \left(\right. 9 x^{2} - 6 x + 4 \left.\right) - 3 \left(\right. 9 x^{3} - 2 \left.\right)\)
Giải:
Bước 1: Mở rộng \(\left(\right. 3 x + 2 \left.\right) \left(\right. 9 x^{2} - 6 x + 4 \left.\right)\):
\(\left(\right. 3 x + 2 \left.\right) \left(\right. 9 x^{2} - 6 x + 4 \left.\right) = 3 x \left(\right. 9 x^{2} - 6 x + 4 \left.\right) + 2 \left(\right. 9 x^{2} - 6 x + 4 \left.\right)\)\(= 27 x^{3} - 18 x^{2} + 12 x + 18 x^{2} - 12 x + 8\)\(= 27 x^{3} + 8\)
Bước 2: Mở rộng \(3 \left(\right. 9 x^{3} - 2 \left.\right)\):
\(3 \left(\right. 9 x^{3} - 2 \left.\right) = 27 x^{3} - 6\)
Bước 3: Trừ hai biểu thức:
\(B = \left(\right. 27 x^{3} + 8 \left.\right) - \left(\right. 27 x^{3} - 6 \left.\right) = 8 + 6 = 14\)
Vậy, \(B = 14\).
c) \(C = \left(\right. x - 2 \left.\right) \left(\right. x^{2} - 2 x + 4 \left.\right) - \left(\right. x^{3} - 7 \left.\right)\)
Giải:
Bước 1: Mở rộng \(\left(\right. x - 2 \left.\right) \left(\right. x^{2} - 2 x + 4 \left.\right)\):
\(\left(\right. x - 2 \left.\right) \left(\right. x^{2} - 2 x + 4 \left.\right) = x \left(\right. x^{2} - 2 x + 4 \left.\right) - 2 \left(\right. x^{2} - 2 x + 4 \left.\right)\)\(= x^{3} - 2 x^{2} + 4 x - 2 x^{2} + 4 x - 8\)\(= x^{3} - 4 x^{2} + 8 x - 8\)
Bước 2: Trừ biểu thức \(x^{3} - 7\):
\(C = \left(\right. x^{3} - 4 x^{2} + 8 x - 8 \left.\right) - \left(\right. x^{3} - 7 \left.\right)\)\(C = x^{3} - 4 x^{2} + 8 x - 8 - x^{3} + 7\)\(C = - 4 x^{2} + 8 x - 1\)
Vậy, \(C = - 4 x^{2} + 8 x - 1\).
d) \(D = \left(\right. x + 1 \left.\right)^{3} - \left(\right. x - 1 \left.\right) \left(\right. x^{2} + x + 1 \left.\right) - 3 x \left(\right. x + 1 \left.\right)\)
Giải:
Bước 1: Mở rộng \(\left(\right. x + 1 \left.\right)^{3}\):
\(\left(\right. x + 1 \left.\right)^{3} = x^{3} + 3 x^{2} + 3 x + 1\)
Bước 2: Mở rộng \(\left(\right. x - 1 \left.\right) \left(\right. x^{2} + x + 1 \left.\right)\):
\(\left(\right. x - 1 \left.\right) \left(\right. x^{2} + x + 1 \left.\right) = x \left(\right. x^{2} + x + 1 \left.\right) - 1 \left(\right. x^{2} + x + 1 \left.\right)\)\(= x^{3} + x^{2} + x - x^{2} - x - 1\)\(= x^{3} - 1\)
Bước 3: Mở rộng \(3 x \left(\right. x + 1 \left.\right)\):
\(3 x \left(\right. x + 1 \left.\right) = 3 x^{2} + 3 x\)
Bước 4: Trừ các biểu thức:
\(D = \left(\right. x^{3} + 3 x^{2} + 3 x + 1 \left.\right) - \left(\right. x^{3} - 1 \left.\right) - \left(\right. 3 x^{2} + 3 x \left.\right)\)\(D = x^{3} + 3 x^{2} + 3 x + 1 - x^{3} + 1 - 3 x^{2} - 3 x\)\(D = 2\)
Vậy, \(D = 2\).
e) \(E = 3 \left(\right. x - 1 \left.\right) \left(\right. x^{2} + x + 1 \left.\right) + x \left(\right. x + 1 \left.\right) - x \left(\right. x^{2} + x + 1 \left.\right)\)
Giải:
Bước 1: Mở rộng \(3 \left(\right. x - 1 \left.\right) \left(\right. x^{2} + x + 1 \left.\right)\):
\(3 \left(\right. x - 1 \left.\right) \left(\right. x^{2} + x + 1 \left.\right) = 3 \left(\right. x \left(\right. x^{2} + x + 1 \left.\right) - \left(\right. x^{2} + x + 1 \left.\right) \left.\right)\)\(= 3 \left(\right. x^{3} + x^{2} + x - x^{2} - x - 1 \left.\right) = 3 \left(\right. x^{3} - 1 \left.\right)\)\(= 3 x^{3} - 3\)
Bước 2: Mở rộng \(x \left(\right. x + 1 \left.\right)\):
\(x \left(\right. x + 1 \left.\right) = x^{2} + x\)
Bước 3: Mở rộng \(x \left(\right. x^{2} + x + 1 \left.\right)\):
\(x \left(\right. x^{2} + x + 1 \left.\right) = x^{3} + x^{2} + x\)
Bước 4: Trừ các biểu thức:
\(E = \left(\right. 3 x^{3} - 3 \left.\right) + \left(\right. x^{2} + x \left.\right) - \left(\right. x^{3} + x^{2} + x \left.\right)\)\(E = 3 x^{3} - 3 + x^{2} + x - x^{3} - x^{2} - x\)\(E = 2 x^{3} - 3\)
Vậy, \(E = 2 x^{3} - 3\).
g) \(9 x \left(\right. x + 1 \left.\right)^{3} + \left(\right. x - 1 \left.\right)^{3} = 2 x^{3}\)
Giải:
Mở rộng biểu thức và kiểm tra tính đúng đắn:
\(9 x \left(\right. x + 1 \left.\right)^{3} = 9 x \left(\right. x^{3} + 3 x^{2} + 3 x + 1 \left.\right) = 9 x^{4} + 27 x^{3} + 27 x^{2} + 9 x\)\(\left(\right. x - 1 \left.\right)^{3} = x^{3} - 3 x^{2} + 3 x - 1\)
Cộng cả hai biểu thức:
\(9 x \left(\right. x + 1 \left.\right)^{3} + \left(\right. x - 1 \left.\right)^{3} = 9 x^{4} + 27 x^{3} + 27 x^{2} + 9 x + x^{3} - 3 x^{2} + 3 x - 1\)\(= 9 x^{4} + 28 x^{3} + 24 x^{2} + 12 x - 1\)
So với \(2 x^{3}\), ta thấy biểu thức không đúng. Có thể bài toán có lỗi. Nếu có sự nhầm lẫn, bạn có thể điều chỉnh lại nhé!
h) \(\left(\right. x + 3 \left.\right) \left(\right. x^{2} - 3 x + 9 \left.\right) = x \left(\right. x^{2} - 3 x + 9 \left.\right) = x \left(\right. x^{2} + 4 \left.\right) - 1\)

a) Ta có: \(x^2+9x+20\)
\(=x^2+4x+5x+20\)
\(=x\left(x+4\right)+5\left(x+4\right)\)
\(=\left(x+4\right)\left(x+5\right)\)
b) Ta có: \(x^2+x-12\)
\(=x^2+4x-3x-12\)
\(=x\left(x+4\right)-3\left(x+4\right)\)
\(=\left(x+4\right)\left(x-3\right)\)
c) Ta có: \(6x^2-11x-16\)
\(=6\left(x^2-\frac{11}{6}x-\frac{16}{6}\right)\)
\(=6\left(x^2-2\cdot x\cdot\frac{11}{12}+\frac{121}{144}-\frac{505}{144}\right)\)
\(=6\left[\left(x-\frac{11}{12}\right)^2-\frac{505}{144}\right]\)
\(=6\left(x-\frac{11+\sqrt{505}}{12}\right)\left(x-\frac{11-\sqrt{505}}{12}\right)\)
d) Ta có: \(4x^2-8x-5\)
\(=4x^2-10x+2x-5\)
\(=2x\left(2x-5\right)+\left(2x-5\right)\)
\(=\left(2x-5\right)\left(2x+1\right)\)
e) Ta có: \(x^3-6x^2-x+30\)
\(=x^3+2x^2-8x^2-16x+15x+30\)
\(=x^2\left(x+2\right)-8x\left(x+2\right)+15\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-8x+15\right)\)
\(=\left(x+2\right)\left(x^2-3x-5x+15\right)\)
\(=\left(x+2\right)\left[x\left(x-3\right)-5\left(x-3\right)\right]\)
\(=\left(x+2\right)\left(x-3\right)\left(x-5\right)\)
g) Ta có: \(x^3+9x^2+23x+15\)
\(=x^3+x^2+8x^2+8x+15x+15\)
\(=x^2\left(x+1\right)+8x\left(x+1\right)+15\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+8x+15\right)\)
\(=\left(x+1\right)\left(x^2+3x+5x+15\right)\)
\(=\left(x+1\right)\left[x\left(x+3\right)+5\left(x+3\right)\right]\)
\(=\left(x+1\right)\left(x+3\right)\left(x+5\right)\)
h) Ta có: \(2x^4-x^3-9x^2+13x\)
\(=x\left(2x^3-x^2-9x+13\right)\)
i) Ta có: \(x^4+2x^3-16x^2-2x+15\)
\(=x^4-3x^3+5x^3-15x^2-x^2+3x-5x+15\)
\(=x^3\left(x-3\right)+5x^2\left(x-3\right)-x\left(x-3\right)-5\left(x-3\right)\)
\(=\left(x-3\right)\left(x^3+5x^2-x-5\right)\)
\(=\left(x-3\right)\left[x^2\left(x+5\right)-\left(x+5\right)\right]\)
\(=\left(x-3\right)\left(x+5\right)\left(x^2-1\right)\)
\(=\left(x-3\right)\left(x+5\right)\left(x-1\right)\left(x+1\right)\)

1.
\(\dfrac{7x-3}{x-1}=\dfrac{2}{3}\left(ĐKXĐ:x\ne1\right)\\ \Leftrightarrow3\left(7x-3\right)=2\left(x-1\right)\\ \Leftrightarrow21x-9=2x-2\\ \Leftrightarrow19x=7\\ \Leftrightarrow x=\dfrac{7}{19}\left(TMĐK\right)\)
2.
\(\dfrac{5x-1}{3x+2}=\dfrac{5x-7}{3x-1}\left(ĐKXĐ:x\ne-\dfrac{2}{3};x\ne\dfrac{1}{3}\right)\\ \Leftrightarrow\left(5x-1\right)\left(3x-1\right)=\left(5x-7\right)\left(3x+2\right)\\ \Leftrightarrow15x^2-5x-3x+1=15x^2+10x-21x-14\\ \Leftrightarrow-8x+1=-11x-14\\ \Leftrightarrow3x=-15\\ \Leftrightarrow x=-5\left(TMĐK\right)\)
3.
\(\dfrac{1-x}{x+1}+3=\dfrac{2x+3}{x+1}\left(ĐKXĐ:x\ne-1\right)\\ \Leftrightarrow\left(\dfrac{1-x}{x+1}+3\right)\left(x+1\right)=2x+3\\ \Leftrightarrow\dfrac{1-x+3\left(x+1\right)}{x+1}.\left(x+1\right)=2x+3\\ \Leftrightarrow\dfrac{4+2x}{x+1}\left(x+1\right)=2x+3\\ \Leftrightarrow4+2x=2x+3\\ \Leftrightarrow4=3\)
Vô nghiệm.

\(x^2-4y^2+4y-1=x^2-\left(2y-1\right)^2=\left(x+2y-1\right)\left(x-2y+1\right)\)
\(x^4+3x^3-9x-9\)
\(=x^4-9+3x^3-9x\)
\(=\left(x^2-3\right)\left(x^2+3\right)+3x\left(x^2-3\right)\)
\(=\left(x^2-3\right)\left(x^2+3+3x\right)\)
Lời giải của các bạn đều thỏa mãn yêu cầu đề bài là phân tích đa thức thành nhân tử