Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Theo phương án 1, tiền lương mỗi quý tạo thành cấp số nhân với
\({u_1} = 5 \times 3 = 15\), công sai \(d = 0,5 \times 3 = 1,5\)
Công thức tổng quát \({u_n} = 15 + 1,5\left( {n - 1} \right)\)
Sau 3 năm làm việc \(\left( {n = 12} \right)\), lương của người nông dân là:
\(\frac{{12}}{2}\left[ {2 \times 15 + \left( {12 - 1} \right) \times 1,5} \right] = 279\) (triệu đồng)
Theo phương án 2, tiền lương mỗi quý sẽ tạo thành cấp số nhân với
\({u_1} = 5 \times 3 = 15\), công bội \(q = 1,05\)
Công thức tổng quát \({u_n} = 15 \times 1,{05^{n - 1}}\)
Sau 3 năm làm việc \(\left( {n = 12} \right),\) lương của người nông dân là:
\(\frac{{15\left( {1 - 1,{{05}^{12}}} \right)}}{{1 - 1,05}} = 238,757\) (triệu đồng)
Vậy thì theo phương án 1 thì tổng lương nhận được của người nông dân cao hơn.

Sau 5 năm lương tăng số lần:
5 x 3 = 15 (lần)
Tổng lương sau 5 năm:
15 x 500 000 + 4 000 000 = 11 500 000 (đồng)
Đ.số:...

a) Số hạng tổng quát: \({s_n} = 200 + 25(n - 1)\).
Lương của anh Thanh vào năm thứ 5 làm việc cho công ty là :
\({s_5} = 200 + 25(5 - 1) = 300\) (triệu đồng)
b) Ta có:
\(\begin{array}{l}{s_{n + 1}} = 200 + 25(n + 1 - 1) = 200 + 25n\\{s_{n + 1}} - {s_n} = 200 + 25n - \left[ {200 + 25(n - 1)} \right] = 25 > 0\\ \Rightarrow {s_{n + 1}} > {s_n}\end{array}\)
\( \Rightarrow \) \(\left( {{s_n}} \right)\) là dãy số tăng.
Vậy \(\left( {{s_n}} \right)\) là dãy số tăng.

Số tiền lương anh Nam nhận được sau 10 lập thành cấp số cộng với:
Số hạng đầu \({u_1} = 100\) và công sai \(d = 20\)
Tổng lương anh Nam nhận được sau 10 năm là:
\({S_n} = \frac{n}{2}\left[ {2{u_1} + \left( {n - 1} \right)d} \right] = \frac{{10}}{2}\left[ {2.100 + \left( {10 - 1} \right).20} \right] = 1900\) (triệu đồng)

Lời giải:
Sau 10 năm đi làm ~ 120 tháng ~ 20 lần tăng lương.
Lương sau 10 năm là:
$6(1+5\text{%})^20=15,92$ (triệu đồng)

a) Số tiền lãi sau một năm là: \(A.r\)
Tổng số tiền vốn và lãi sau một năm của người gửi là: \(A + Ar = A\left( {1 + r} \right)\).
b) Số tiền lãi sau tháng thứ nhất là: \(A.\frac{r}{{12}}\)
Tổng số tiền vốn và lãi sau tháng thứ nhất là: \(A + A.\frac{r}{{12}} = A\left( {1 + \frac{r}{{12}}} \right)\).
Số tiền lãi sau tháng thứ hai là: \(A\left( {1 + \frac{r}{{12}}} \right).\frac{r}{{12}}\)
Tổng số tiền vốn và lãi sau tháng thứ hai là:
\(A\left( {1 + \frac{r}{{12}}} \right) + A\left( {1 + \frac{r}{{12}}} \right).\frac{r}{{12}} = A\left( {1 + \frac{r}{{12}}} \right).\left( {1 + \frac{r}{{12}}} \right) = A{\left( {1 + \frac{r}{{12}}} \right)^2}\).
Số tiền lãi sau tháng thứ ba là: \(A{\left( {1 + \frac{r}{{12}}} \right)^2}.\frac{r}{{12}}\)
Tổng số tiền vốn và lãi sau tháng thứ ba là:
\(A{\left( {1 + \frac{r}{{12}}} \right)^2} + A{\left( {1 + \frac{r}{{12}}} \right)^2}.\frac{r}{{12}} = A{\left( {1 + \frac{r}{{12}}} \right)^2}.\left( {1 + \frac{r}{{12}}} \right) = A{\left( {1 + \frac{r}{{12}}} \right)^3}\).
…
Vậy tổng số tiền vốn và lãi sau một năm là: \(A{\left( {1 + \frac{r}{{12}}} \right)^{12}}\).

Gọi unn là số tiền sau mỗi tháng ông An còn nợ ngân hàng.
Lãi suất mỗi tháng là 1% .
Ta có:
u1 = 1 000 000 000 đồng.
u2 = u1 + u1.1% - a = u1(1 + 1%) – a (đồng)
u3 = u1(1 + 1%) – a + [u1(1 + 1%) – a].1% – a = u1(1 + 1%)2 – a(1 + 1%) – a
...
un = u1(1 + 1%)n-1 – a(1 + 1%)n-2 – a(1 + 1%)n-3 – a(1 + 1%)n-4 – ... – a.
Ta thấy dãy a(1 + 1%)n-1; a(1 + 1%)n-3; a(1 + 1%)n-4; ...; a lập thành một cấp số nhân với số hạng đầu a1 = a và công bội q = 1 + 1% = 99% có tổng n – 2 số hạng đầu là:
\({S_{n - 2}} = \frac{{a\left[ {1 - {{\left( {99\% } \right)}^{n - 2}}} \right]}}{{1 - 99\% }} = 100a\left[ {1 - {{\left( {99\% } \right)}^{n - 2}}} \right]\).
Suy ra un = u1(1 + 1%)n-1 – 100a[1 – (99%)n-2].
Vì sau 2 năm = 24 tháng thì ông An trả xong số tiền nên n = 24 và u24 = 0. Do đó ta có:
u24 = u1(1 + 1%)23 – 100a[1 – (99%)22] = 0
⇔ 1 000 000 000.(99%) – 100a[1 – (99%)22] = 0
⇔ a = 40 006 888,25
Vậy mỗi tháng ông An phải trả 40 006 888,25 đồng.
Ta có:
+ Công thức tính lương của phương án thứ nhất: \({S_n} = 120 + \left( {n - 1} \right).18\)
+ Công thức tính lương của phương án thứ hai: \({Q_n} = 24 + \left( {n - 1} \right).1,8\)
a) Sau ba năm:
- Phương án thứ nhất có: \({S_3} = 120 + \left( {3 - 1} \right).18 = 156\) (triệu đồng)
- Phương án thứ hai có: \({Q_{12}} = 24 + (12 - 1).1,8 = 43,8\) (triệu đồng)
Nếu kí hợp đồng lao động 3 năm, em sẽ chọn phương án thứ nhất
b) Sau 10 năm:
- Phương án thứ nhất có: \({S_{10}} = 120 + \left( {10 - 1} \right).18 = 282\) (triệu đồng)
- Phương án thứ hai có: \({Q_{40}} = 24 + (40 - 1).1,8 = 94,2\) (triệu đồng)
Nếu kí hợp đồng lao động 10 năm, em sẽ chọn phương án thứ nhất.