Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Hình Tự Vẽ
Trong tam giác BDC ta có :
\(\widehat{C}=180^0-90^0-\widehat{BDC}=90^0-\widehat{BDC}\)(1)
Hình thang cân ABCD có:
\(\widehat{C}=180^0-\widehat{A}=\widehat{ADB}+\widehat{ABD}\)(2)
\(\widehat{D}=\widehat{C}=\widehat{BDC}+\widehat{ADB}\)(3)
Từ (2 ) (3) => \(\widehat{ABD}=\widehat{ADB}=\widehat{BDC}\)(4)
Từ (1)(4)=> \(\widehat{C}=90^0-\widehat{BDC}=2\widehat{BDC}\)
\(\Rightarrow3\widehat{BDC}=90^0\Leftrightarrow\widehat{BDC}=30^0\)
\(\Rightarrow\widehat{C}=180^0-90^0-30^0=60^0\)
P/s tham khảo nhaaaa

a: Xét ΔDAC và ΔCBD có
DA=BC
AC=BD
DC chung
Do đó: ΔDAC=ΔCBD
=>\(\hat{DAC}=\hat{CBD}\)
=>\(\hat{DAC}=90^0\)
=>AD⊥ AC
b: ABCD là hình thang cân
=>AD=BC
mà AB=BC
nên AD=AB=BC
Ta có: AD=AB
=>ΔABD cân tại A
=>\(\hat{ABD}=\hat{ADB}\)
mà \(\hat{ABD}=\hat{BDC}\) (hai góc so le trong, AB//DC)
nên \(\hat{ADB}=\hat{CDB}\)
=>DB là phân giác của góc ADC
=>\(\hat{ADC}=2\cdot\hat{BDC}\)
Ta có: BA=BC
=>ΔBAC cân tại B
=>\(\hat{BAC}=\hat{BCA}\)
mà \(\hat{BAC}=\hat{ACD}\) (hai góc so le trong, AB//CD)
nên \(\hat{BCA}=\hat{DCA}\)
=>CA là phân giác của góc BCD
=>\(\hat{BCD}=2\cdot\hat{ACD}\)
ΔADC=ΔBCD
=>\(\hat{ACD}=\hat{BDC}\)
=>\(\hat{BDC}=\frac12\cdot\hat{BCD}\)
ΔBDC vuông tại B
=>\(\hat{BDC}+\hat{BCD}=90^0\)
=>\(\frac12\cdot\hat{BCD}+\hat{BCD}=90^0\)
=>\(1,5\cdot\hat{BCD}=90^0\)
=>\(\hat{BCD}=60^0\)
=>\(\hat{ADC}=\hat{BCD}=60^0\)
AB//CD
=>\(\hat{ABC}+\hat{BCD}=180^0\)
=>\(\hat{ABC}=180^0-60^0=120^0\)
ABCD là hình thang cân
=>\(\hat{BAD}=\hat{ABC}\)
=>\(\hat{BAD}=120^0\)
c: Kẻ OK⊥AD tại K; OE⊥DC tại E; OH⊥BC tại H
=>OK,OE,OH lần lượt là khoảng cách từ O xuống AD,DC,BC
Xét ΔDKO vuông tại K và ΔDEO vuông tại E có
DO chung
\(\hat{KDO}=\hat{EDO}\)
Do đó: ΔDKO=ΔDEO
=>OK=OE
Xét ΔCEO vuông tại E và ΔCHO vuông tại H có
CO chung
\(\hat{ECO}=\hat{HCO}\)
Do đó: ΔCEO=ΔCHO
=>OE=OH
=>OE=OH=OK
=>O cách đều hai cạnh bên và đáy lớn của hình thang cân ABCD