K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2020

Trả lời :

Bạn Nguyễn Khánh Huyền đừng bình luận linh tinh nhé.

- Hok tốt !

^_^

1 tháng 5 2020

bạn nguyễn thị khánh huyền ơi đừng lấy ảnh của mk đi bình luận linh tinh nhé

ko hay đâu bạn ơi 

30 tháng 4 2020

có cosC=BC/CD=2CM/8CM=1/4

->tính đc góc C-> tính đc góc B

30 tháng 4 2020

Bạn ơi lớp 8 chưa học Cos nhé. Cảm ơn.

31 tháng 7 2018

a, Bạn chứng minh được \(\Delta ABD\infty\Delta BDC\left(g.g\right)\)

\(\Rightarrow\frac{AB}{BD}=\frac{BD}{DC}\Rightarrow AB.DC=BD^2\Rightarrow2.8=BD^2\Rightarrow BD^2=16\Rightarrow BD=4\left(cm\right)\)(vì AB = 2cm , CD = 8 cm)

Ta có: \(\frac{BD}{CD}=\frac{4}{8}=\frac{1}{2}\)

Xét tam giác BDC vuông tại B có: BD = 1/2 CD nên \(\widehat{C}=30^0\)

ABCD là hình thang vuông(gt) \(\Rightarrow AB//CD\)

 \(\Rightarrow\widehat{ABC}+\widehat{C}=180^0\) ( 2 góc trong cùng phía)

\(\Rightarrow\widehat{ABC}+30^0=180^0\) (do góc C = 30 độ)

\(\Rightarrow\widehat{ABC}=150^0\)

b, Áp dụng định lí Pitago vào tam giác ABD vuông tại A, tính được: \(AD=\sqrt{12}\left(cm\right)\)

Diện tích hình thang ABCD là: 

                         \(\frac{\left(2+8\right).\sqrt{12}}{2}=5\sqrt{12}\left(cm^2\right)\) 

Chúc bạn học tốt.

1 tháng 5 2020

thang cho dung hoi nua

a: \(\widehat{C}=45^0\)

\(\widehat{B}=135^0\)

 

a: BD=BC

ΔBDC vuông tại B

Do đó: ΔBDC vuông cân tại B

=>\(\hat{BDC}=\hat{BCD}=45^0\)

ta có: AB//CD
=>\(\hat{ABC}+\hat{BCD}=180^0\)

=>\(\hat{ABC}=180^0-45^0=135^0\)

b: Ta có: \(\hat{ABD}+\hat{DBC}=\hat{ABC}\) (tia BD nằm giữa hai tia BA và BC)

=>\(\hat{ABD}=135^0-90^0=45^0\)

=>ΔABD vuông cân tại A

=>AB=AD=3cm

ΔABD vuông tại A

=>\(AB^2+AD^2=BD^2\)

=>\(BD^2=3^2+3^2=18\)

=>\(BD=\sqrt{18}=3\sqrt2\left(\operatorname{cm}\right)\)

mà BD=BC

nên \(CB=3\sqrt2\left(\operatorname{cm}\right)\)

ΔBDC vuông tại B

=>\(BD^2+BC^2=CD^2\)

=>\(CD^2=18+18=36=6^2\)

=>CD=6(cm)