Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vì AB//CD
nên \(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)
Ta có: \(\dfrac{S_{BOA}}{S_{BOC}}=\dfrac{OA}{OC}\)
\(\dfrac{S_{BOA}}{S_{AOD}}=\dfrac{OB}{OD}\)
mà \(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)
nên \(S_{BOC}=S_{AOD}\)

AB=CD AB//CD
=>ABCD là hbh
=>S AOD=1/2*S ADC=1/4*S ABCD=25cm2

a: Độ dài đoạn CD là: \(CD=50:\frac58=80\left(\operatorname{cm}\right)\)
Diện tích hình thang vuông ABCD là:
\(S_{ABCD}=\frac12\times AD\times\left(AB+CD\right)=\frac12\times41,6\times\left(50+80\right)\)
\(=20,8\times130=2704\left(\operatorname{cm}^2\right)\)
b: Kẻ BH⊥DC tại H
=>BH là độ dài đường cao của hình thang ABCD
=>\(S_{ABCD}=\frac12\times BH\times\left(AB+CD\right)\)
=>BH=AD
Diện tích tam giác ADC là: \(S_{ACD}=\frac12\times AD\times DC=\frac12\times BH\times DC\) (1)
Diện tích tam giác BDC là: \(S_{BDC}=\frac12\times BH\times DC\) (2)
Từ (1),(2) suy ra \(S_{ADC}=S_{BCD}\)
=>\(S_{ADO}+S_{ODC}=S_{BOC}+S_{DOC}\)
=>\(S_{AOD}=S_{BOC}\)
=>\(\frac{S_{AOD}}{S_{BOC}}=1\)
A B C D O
a) S(DAB) = S(CAB) ( hai tam giác chung đáy AB; chiều cao hạ từ D = chiều cao hạ từ C xuống AB)
=> S(DAB) - S(AOB) = S(CAB) - S(AOB) => S(AOD) = S(BOC)
b) Chiều cao hình thang ABCD là: 72 x 2 : (2 + 6) = 18 cm
S(ADC) = 18 x 6 : 2 = 54 cm2
S(CAB) = 18 x 2 :2 = 18 cm2
=> S(DAC)/S(BCA) = 54/18 = 3
mà hai tam giác này chung đáy AC nê chiều cao hạ từ D xuống AC = 3 lần chiều cao hạ từ B xuống AC
Mà 2 tam giác AOD và BOA có chung đáy OA nên S(AOD) = 3 x S(AOB)
=> S(AOD) = 3/4 x S(ABD) = 3/4 x S(ABC) = 3/4 x 18 = 13,5 cm2