Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a:
b: TH1: \(\hat{BAD}>90^0;\hat{ABD}>90^0\)
Ta có: ABCD là hình thang
=>\(\hat{ABC}+\hat{BCD}=180^0\)
=>\(\hat{BCD}<180^0-90^0=90^0\)
=>\(\hat{BCD}<\hat{BAD}\)
TH2: \(\hat{ADC}>90^0;\hat{DCB}>90^0\)
Ta có: ABCD là hình thang
DC//AB
=>\(\hat{CDA}+\hat{DAB}=180^0\)
=>\(\hat{DAB}<180^0-90^0=90^0\)
=>\(\hat{DAB}<\hat{DCB}\)
c: Xét tứ giác ABCD có
AB//CD
AB=CD
Do đó: ABCD là hình bình hành

Bài 2:
a: \(\left(-\frac13x^2y\right)\cdot2xy^3=\left(-\frac13\cdot2\right)\cdot x^2\cdot x\cdot y\cdot y^3=-\frac23x^3y^4\)
b: \(\left(-\frac34x^2y\right)\cdot\left(-xy\right)^3=\left(-\frac34\right)\cdot\left(-1\right)\cdot x^2\cdot x^3\cdot y\cdot y^3=\frac34x^5y^4\)
c: \(\frac35\cdot x^2y^5\cdot x^3y^2\cdot\frac{-2}{3}=\left(\frac35\cdot\frac{-2}{3}\right)\cdot x^2\cdot x^3\cdot y^5\cdot y^2=-\frac25x^5y^7\)
d: \(\left(\frac34x^2y^3\right)\cdot\left(2\frac25x^4\right)=\frac34x^2y^3\cdot\frac{12}{5}x^4=\frac34\cdot\frac{12}{5}\cdot x^2\cdot x^4\cdot y^3=\frac95x^6y^3\)
e: \(\left(\frac{12}{15}x^4y^5\right)\cdot\left(\frac59x^2y\right)=\frac45\cdot\frac59\cdot x^4\cdot x^2\cdot y^5\cdot y=\frac49x^6y^6\)
f: \(\left(-\frac17x^2y\right)\left(-\frac{14}{5}x^4y^5\right)=\frac17\cdot\frac{14}{5}\cdot x^2\cdot x^4\cdot y\cdot y^5=\frac25x^6y^6\)
Bài 1: Các đơn thức là \(x^2y;-13;\left(-2\right)^3xy^7\)

Bài 4:
\(=x^3-x^2-2x^2+2x=x^3-3x^2+2x\)
\(=x\left(x^2-3x+2\right)=x\left(x-1\right)\left(x-2\right)\)
Vì x;x-1;x-2 là 3 số liên tiếp
nên \(x\left(x-1\right)\left(x-2\right)⋮3!=6\)(đpcm)

Bài 3:
Gọi x(m) là chiều rộng của mảnh đất(Điều kiện: x>0)
Chiều dài của mảnh đất là: x+5(m)
Theo đề, ta có phương trình:
2x+5=25
\(\Leftrightarrow2x=20\)
hay x=10(thỏa ĐK)
Vậy: Diện tích của mảnh đất là 150m2

dư trong phép chia đa thức f(x)cho nhị thức bậc nhất x-a là 1hằng số và bằng giá trị của đa thức f(x) tại x=a
ta CM:gọi thg of phep chia đa thức f(x)cho nhị thức bậc nhất x-a là Q(x) dư hằng số r,ta có:
f(x)=(x-a).Q(x)+r (*)
vì đằng thức (*) đúng với mọi x nên với x=a,ta có:
f(a)=0.Q(a)+r hay f(a)=r
Vậy số dư trong phép chia f(x)cho nhị thức bậc nhất x-a la f(x)
Từ đó bạn có thể dựa vào đó để tìm đa thức biết số dư
dư trong phép chia đa thức f(x)cho nhị thức bậc nhất x-a là 1hằng số và bằng giá trị của đa thức f(x) tại x=a
ta CM:gọi thg of phep chia đa thức f(x)cho nhị thức bậc nhất x-a là Q(x) dư hằng số r,ta có:
f(x)=(x-a).Q(x)+r (*)
vì đằng thức (*) đúng với mọi x nên với x=a,ta có:
f(a)=0.Q(a)+r hay f(a)=r
Vậy số dư trong phép chia f(x)cho nhị thức bậc nhất x-a la f(x)
Từ đó bạn có thể dựa vào đó để tìm đa thức biết số dư

ta có:
BCNN(13,19)=247<=>BC(13,19)=B(247)
mà BC(13,19) là tổng của 2017 và 1 số tự nhiên nên GTNN của tổng 2017 và 1 số tự nhiên phải là B(247) và lớn hơn hoặc bằng 2017
Suy ra tổng của 2017 và 1 số tự nhiên là 2223
Dó đó số tự nhiên cần tìm là 2223-2017=206

Bài 1:
Vận tốc cano khi dòng nước lặng là: $25-2=23$ (km/h)
Bài 2:
Đổi 1 giờ 48 phút = 1,8 giờ
Độ dài quãng đường AB: $1,8\times 25=45$ (km)
Vận tốc ngược dòng là: $25-2,5-2,5=20$ (km/h)
Cano ngược dòng từ B về A hết:
$45:20=2,25$ giờ = 2 giờ 15 phút.
Bài 1:
a: \(=-10x^3+20x^4-5x\)
b: \(=\dfrac{1}{3}a^2b+7a^5-1\)
c: \(=a^3+8+25-a^3=33\)
d: \(=x^2-16+8-x^3=-x^3+x^2-8\)
e: \(=a^3+1+8-a^3=9\)
f: \(=\dfrac{7-2x+4x-8}{2x+3}=\dfrac{2x-1}{2x+3}\)
g: \(=\dfrac{3}{2\left(x+3\right)}-\dfrac{2}{x\left(x+3\right)}\)
\(=\dfrac{3x-4}{2x\left(x+3\right)}\)