
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: \(A=x+\sqrt{x}+\dfrac{1}{4}-\dfrac{1}{4}=\left(\sqrt{x}+\dfrac{1}{2}\right)^2-\dfrac{1}{4}>=0\)
Dấu '=' xảy ra khi x=0
b: \(B=x-\sqrt{x}+\dfrac{1}{4}-\dfrac{1}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}< =-\dfrac{1}{4}\)
Dấu = xảy ra khi x=1/4
c: \(=x-2005-\sqrt{x-2005}+2005\)
\(=\left(\sqrt{x-2005}\right)^2-2\cdot\sqrt{x-2005}\cdot\dfrac{1}{2}+\dfrac{1}{4}+2004.75\)
\(=\left(\sqrt{x-2005}-\dfrac{1}{2}\right)^2+2004.75>=2004.75\)
Dấu '=' xảy ra khi x=2005,25
d: \(D=x-2+2\sqrt{x-2}+2\)
\(=\left(\sqrt{x-2}+1\right)^2+1>=2\)
Dấu '=' xảy ra khi x=2

a: \(\sqrt{x^2-4x+4}=3x+1\)
=>\(\sqrt{\left(x-2\right)^2}=3x+1\)
=>|x-2|=3x+1
=>\(\begin{cases}3x+1\ge0\\ \left(3x+1\right)^2=\left(x-2\right)^2\end{cases}\Rightarrow\begin{cases}x\ge-\frac13\\ \left(3x+1-x+2\right)\left(3x+1+x-2\right)=0\end{cases}\)
=>\(\begin{cases}x\ge-\frac13\\ \left(2x+3\right)\left(4x-1\right)=0\end{cases}\Rightarrow\begin{cases}x\ge-\frac13\\ x\in\left\lbrace-\frac32;\frac14\right\rbrace\end{cases}\)
=>\(x=\frac14\)
b:
ĐKXĐ: \(x^2-4x+1\ge0\)
=>\(x^2-4x+4-3\ge0\)
=>\(\left(x-2\right)^2\ge3\)
=>\(\left[\begin{array}{l}x-2\ge\sqrt3\\ x-2\le-\sqrt3\end{array}\right.\Rightarrow\left[\begin{array}{l}x\ge2+\sqrt3\\ x\le2-\sqrt3\end{array}\right.\)
\(\sqrt{x^2-4x+1}=x\)
=>\(\begin{cases}x\ge0\\ x^2-4x+1=x^2\end{cases}\Rightarrow\begin{cases}x\ge0\\ -4x+1=0\end{cases}\Rightarrow x=\frac14\)
c: \(\sqrt{x^2-2x+5}=x+3\)
=>\(\begin{cases}x+3\ge0\\ x^2-2x+5=\left(x+3\right)^2\end{cases}\Rightarrow\begin{cases}x\ge-3\\ x^2+6x+9=x^2-2x+5\end{cases}\)
=>\(\begin{cases}x\ge-3\\ x^2+6x+9-x^2+2x-5=0\end{cases}\Rightarrow\begin{cases}x\ge-3\\ 8x+4=0\end{cases}\Rightarrow x=-\frac12\)
d: \(\sqrt{x^2-10x+25}-2x=3\)
=>\(\sqrt{\left(x-5\right)^2}=2x+3\)
=>|x-5|=2x+3
=>\(\begin{cases}2x+3\ge0\\ \left(2x+3\right)^2=\left(x-5\right)^2\end{cases}\Rightarrow\begin{cases}x\ge-\frac32\\ \left(2x+3-x+5\right)\left(2x+3+x-5\right)=0\end{cases}\)
=>\(\begin{cases}x\ge-\frac32\\ \left(x+8\right)\left(3x-2\right)=0\end{cases}\Rightarrow x=\frac23\)
e:
ĐKXĐ: \(\left[\begin{array}{l}x\ge3\\ x\le1\end{array}\right.\)
\(\sqrt{x^2-4x+3}=x-2\)
=>\(\begin{cases}x-2\ge0\\ x^2-4x+3=\left(x-2\right)^2\end{cases}\Rightarrow\begin{cases}x\ge2\\ x^2-4x+3=x^2-4x+4\end{cases}\)
=>x∈∅
f: \(\sqrt{x^2-6x+9}=2x-1\)
=>\(\sqrt{\left(x-3\right)^2}=2x-1\)
=>|x-3|=2x-1
=>\(\begin{cases}2x-1\ge0\\ \left(2x-1\right)^2=\left(x-3\right)^2\end{cases}\Rightarrow\begin{cases}x\ge\frac12\\ \left(2x-1-x+3\right)\left(2x-1+x-3\right)=0\end{cases}\)
=>\(\begin{cases}x\ge\frac12\\ \left(x+2\right)\left(3x-4\right)=0\end{cases}\Rightarrow x=\frac43\)

c) ĐKXĐ: \(x\in R\)
PT\(\Leftrightarrow\left|x-3\right|=3-x=-\left(x-3\right)\)
\(\Rightarrow x-3< 0\)\(\Leftrightarrow x< 3\)
d) ĐKXĐ: \(\frac{-5}{2}\le x\le1\)
PT\(\Leftrightarrow2x+5=1-x\Leftrightarrow3x=-4\Leftrightarrow x=\frac{-4}{3}\)
e) \(\left|x^2-1\right|+\left|x+1\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}x^2-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}x^2=1\\x=-1\end{matrix}\right.\Leftrightarrow x=-1}\)

a) Vì x>=0 và x2=16
=> x=4 => \(\sqrt{x}=2\)
=> B=\(\frac{2\cdot2+3}{4-1}=\frac{7}{3}\)
b) \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
\(=\frac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{x-1}\)
\(=\frac{x+2\sqrt{x}+1-x+\sqrt{x}+2\sqrt{x}-2}{x-1}\)
\(=\frac{5\sqrt{x}-1}{x-1}\)
=> \(A\left(x-1\right)=5\sqrt{x}-1\left(đpcm\right)\)
c) \(\frac{A}{B}=\frac{5\sqrt{x}-1}{x-1}\cdot\frac{x-1}{2\sqrt{x}+3}=\frac{5\sqrt{x}-1}{2\sqrt{x}+3}=\frac{\frac{5}{2}\left(2\sqrt{x}+3\right)-\frac{17}{2}}{2\sqrt{x}+3}=\frac{5}{2}-\frac{17}{2\left(2\sqrt{x}+3\right)}\)
=> 17 chia hết cho \(2\sqrt{x}+3\)
\(\Rightarrow2\sqrt{x}+3\inƯ\left(17\right)=\left\{-17;-1;1;17\right\}\)
ta có bảng
\(2\sqrt{x}+3\) | -17 | -1 | 1 | 17 |
\(\sqrt{x}\) | -1 | 7 | -2 | -7 |
x | \(\varnothing\) | 49 | \(\varnothing\) | \(\varnothing\) |

a) C=\(\frac{1}{2\left(\sqrt{x}-1\right)}\)_\(\frac{1}{2\left(\sqrt{x}+1\right)}\)_\(\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)\(x\ge0;x\ne1\)
C=\(\frac{\sqrt{x}+1-\sqrt{x}+1-2\sqrt{x}}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+x\right)}\)
C=\(\frac{-2\sqrt{x}+2}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
C=\(\frac{-2\left(\sqrt{x}-1\right)}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
C=\(\frac{-1}{\sqrt{x}+1}\)
vậy với \(x\ge0;x\ne1\)thì C=\(\frac{-1}{\sqrt{x}+1}\)
b) thay x=\(\frac{4}{9}\)vào bt ta có :
C=\(\frac{-1}{\sqrt{\frac{4}{9}}+1}\)
C=\(\frac{-1}{\frac{2}{3}+1}=\frac{-1}{\frac{5}{3}}\)
C=\(\frac{-5}{3}\)
vậy với x=\(\frac{4}{9}\)thì C=\(\frac{-5}{3}\)