Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Từ phương trình \(x = 5 sin \left(\right. 2 \pi t + \frac{\pi}{6} \left.\right)\) (cm)
\(\Rightarrow A = 5\) cm; \(\omega = 2 \pi\) rad/s
Ta có: \(\text{v} = x^{'} = \omega A cos \left(\right. \omega t + \varphi \left.\right) = 2 \pi . 5. cos \left(\right. 2 \pi t + \frac{\pi}{6} \left.\right) = 10 \pi cos \left(\right. 2 \pi t + \frac{\pi}{6} \left.\right)\) cm/s
a. Ở thời điểm \(t = 5\) s
Ta có: \(x = 5 sin \left(\right. 2 \pi . 5 + \frac{\pi}{6} \left.\right) = 2 , 5\) cm
\(\text{v} = 10 \pi cos \left(\right. 2 \pi . 5 + \frac{\pi}{6} \left.\right) = 5 \sqrt{30}\) cm/s
\(a = - \omega^{2} x = - \left(\left(\right. 2 \pi \left.\right)\right)^{2} . 2 , 5 = - 100\) cm/s2
b. Khi pha dao động là 120o.
\(x = 5 sin 12 0^{o} = 2 , 5 \sqrt{3}\) cm
\(v = 10 \pi cos 12 0^{o} = - 5 \pi\) cm/s
\(a = - \omega^{2} x = - 4 \pi^{2} . 2 , 5 \sqrt{3} = - \sqrt{3}\) cm/s2

a.Vì q1 > 0 mà chúng đẩy nhau nên q2 > 0
F= \(\frac{k.\left|q_1q_2\right|}{r^2}\)
\(\Rightarrow\left|q_2\right|=\frac{F.r^2}{\left|q_1\right|}=\frac{6,75.10^{-5}.0,02^2}{\left|4.10^{-8}\right|}=0,675\left(C\right)\)
=>q2 =0,675 C
b)
b) \(E_{q_1}=\frac{k.\left|q_1\right|}{BH^2}=\frac{9.10^9.\left|4.10^{-8}\right|}{0,01^2}=3,6.10^6\frac{V}{m}\)
\(E_{q_2}=\frac{k.\left|q_2\right|}{AH^2}=\frac{9.10^9.\left|0,675\right|}{0,01^2}=6,075.10^{13}\frac{V}{m}\)
Vì vecto E1 ↑↑ vecto E2=>E=|E1-E2|=6,075.1013 V/m
\(E_{q_3}=\frac{k.\left|q_3\right|}{AH^2}=\frac{9.10^9.\left|-2.10^{-8}\right|}{\left(0,02.\sin45^o\right)^2}=621,5.10^3\frac{V}{m}\)
Vì vecto E vuông góc với Eq3 nên:
EH =\(\sqrt{E_{q_3}^2+E^2}=6,075.10^{13}\left(\frac{V}{m}\right)\)
F là lực giữa hai điện tích (N)
k là hằng số Coulomb \(k=9\cdot10^9Nm^2/C^2\)
\(q_1,q_2\) là điện tích (C)
\(r\) khoảng cách giữa hai điện tích (m)
\(\varepsilon_0\) là hằng số điện \(\varepsilon_0=8,85\cdot10^{-12}C^2/Nm^2\)