
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Xét 2 tam giác ABC và MNP có:
AB=MN (gt)
\(\widehat {BAC} = \widehat {NMP}\) (gt)
AC=MP (gt)
Vậy \(\Delta ABC = \Delta MNP\)(c.g.c)

Xét \(\Delta ABC\) và \(\Delta MNP\) có:
\(\begin{array}{l}AB = MN\\BC = NP\\AC = MP\end{array}\)
Vậy\(\Delta ABC\) =\(\Delta MNP\)(c.c.c)
Xét \(\Delta DEF\) và \(\Delta GHK\) có:
\(\begin{array}{l}DE = GH\\EF = HK\\DF = GK\end{array}\)
Vậy\(\Delta DEF\)=\(\Delta GHK\) (c.c.c)

Em thấy bạn Vuông nói đúng
Để chứng minh điều này, ta có thể chỉ ra trường hợp 2 góc bằng nhau nhưng không đối đỉnh.
Ví dụ:
\(\widehat {{O_1}} = \widehat {{O_2}}\) nhưng hai góc này không đối đỉnh

2 góc kề bù trong hình là: góc mOt và tOn
Ta có:
\(\begin{array}{l}\widehat {mOt} + \widehat {tOn} = 180^\circ \\\widehat {mOt} = 180^\circ - \widehat {tOn} = 180^\circ - 60^\circ = 120^\circ \end{array}\)

Đoạn thẳng đơn vị được chia thành 6 phần bằng nhau, lấy một đoạn làm đơn vị mới, đơn vị mới bằng \(\frac{1}{6}\) đơn vị cũ.
Điểm A nằm bên phải gốc O và cách O một đoạn bằng 10 đơn vị mới. Do đó điểm A biểu diễn số hữu tỉ \(\frac{{10}}{6} = \frac{5}{3}\)
Điểm B nằm bên trái gốc O và cách O một đoạn bằng 5 đơn vị mới. Do đó điểm B biểu diễn số hữu tỉ \(\frac{{ - 5}}{6}\)
Điểm C nằm bên trái gốc O và cách O một đoạn bằng 13 đơn vị mới. Do đó điểm C biểu diễn số hữu tỉ \(\frac{{ - 13}}{6}\)

d: \(\frac27-\left(\frac23+2x\right)=\frac57\)
=>\(2x+\frac23=\frac27-\frac57=-\frac37\)
=>\(2x=-\frac37-\frac23=-\frac{9}{21}-\frac{14}{21}=-\frac{23}{21}\)
=>\(x=-\frac{23}{21}:2=-\frac{23}{42}\)
e: \(\frac12-2x=\left(-\frac12\right)^3\)
=>\(\frac12-2x=-\frac18\)
=>\(2x=\frac12+\frac18=\frac58\)
=>\(x=\frac58:2=\frac{5}{16}\)
f: \(\left(2x-3\right)\left(\frac34x+1\right)=0\)
=>\(\left[\begin{array}{l}2x-3=0\\ \frac34x+1=0\end{array}\right.\Rightarrow\left[\begin{array}{l}2x=3\\ \frac34x=-1\end{array}\right.\Rightarrow\left[\begin{array}{l}x=\frac32\\ x=-\frac43\end{array}\right.\)
g: \(\frac{7}{12}-\left(x+\frac76\right):\frac65=-\frac54\)
=>\(\left(x+\frac76\right):\frac65=\frac{7}{12}+\frac54=\frac{7}{12}+\frac{15}{12}=\frac{22}{12}=\frac{11}{6}\)
=>\(x+\frac76=\frac{11}{6}\cdot\frac65=\frac{11}{5}\)
=>\(x=\frac{11}{5}-\frac76=\frac{66}{30}-\frac{35}{30}=\frac{31}{30}\)
h: \(\frac34:\left(x+\frac12\right)-\frac56=-\frac14\)
=>\(\frac34:\left(x+\frac12\right)=-\frac14+\frac56=-\frac{3}{12}+\frac{10}{12}=\frac{7}{12}\)
=>\(x+\frac12=\frac34:\frac{7}{12}=\frac34\cdot\frac{12}{7}=\frac{36}{28}=\frac97\)
=>\(x=\frac97-\frac12=\frac{18}{14}-\frac{7}{14}=\frac{11}{14}\)
i: \(\frac25x+\frac35x=\frac34\)
=>\(x\left(\frac25+\frac35\right)=\frac34\)
=>\(x\cdot\frac55=\frac34\)
=>\(x=\frac34\)
k: \(\frac12x+\frac23x-x=\frac13\)
=>\(x\left(\frac12+\frac23-1\right)=\frac13\)
=>\(x\left(\frac12-\frac13\right)=\frac13\)
=>\(x\cdot\frac16=\frac13\)
=>\(x=\frac13:\frac16=2\)
l: \(\left(\frac32-\frac{2}{-5}\right):x-\frac12=\frac32\)
=>\(\left(\frac32+\frac25\right):x=\frac32+\frac12=2\)
=>\(\left(\frac{15}{10}+\frac{4}{10}\right):x=2\)
=>\(\frac{19}{10}:x=2\)
=>\(x=\frac{19}{10}:2=\frac{19}{20}\)
m: \(\left(5x-1\right)\left(2x-\frac13\right)=0\)
=>\(\left[\begin{array}{l}5x-1=0\\ 2x-\frac13=0\end{array}\right.\Rightarrow\left[\begin{array}{l}5x=1\\ 2x=\frac13\end{array}\right.\Rightarrow\left[\begin{array}{l}x=\frac15\\ x=\frac16\end{array}\right.\)

Do hai tam giác trên có hai cặp góc bằng nhau nên cặp góc còn lại bằng nhau.
Xét \(\Delta ABC\) và \(\Delta A'B'C'\) có:
\(\widehat A = \widehat {A'}\) (gt)
AC = A'C' (gt)
\(\widehat C = \widehat {C'}\) (cmt)
\(\Rightarrow \Delta ABC = \Delta A'B'C'\) (g.c.g)
Vậy hai tam giác đã cho bằng nhau theo trường hợp góc – cạnh – góc.
Xét tam giác MNP có:
\(\begin{array}{l}\widehat M + \widehat N + \widehat P = {180^o}\\ \Rightarrow \widehat M + {50^o} + {70^o} = {180^o}\\ \Rightarrow \widehat M = {60^o}\end{array}\)
Xét 2 tam giác ABC và MNP có:
AB=MN (gt)
\(\widehat {BAC} = \widehat {NMP} (=60^0)\)
AC=MP (gt)
Vậy \(\Delta ABC = \Delta MNP\)(c.g.c)