Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:
a)\(\left(2x+5\right)\left(6y-7\right)=13\)
=>2x+5 và 6y-7 thuộc Ư(13)={13;1;-1;-13}
- Với 2x+5=13 =>x=4 =>6y-7=1 =>y=4/3 (loại)
- Với 2x+5=-13 =>x=-9 =>6y-7=-1 =>y=1 (tm)
- Với 2x+5=-1 =>x=-3 =>6y-7=-13 =>y=-1 (tm)
- Với 2x+5=1 =>x=-2 =>6y-7=13=13 =>y=10/3 (loại)
Vậy các cặp số nguyên (x;y) thỏa mãn là (-9,1);(-3;-1)
2)xy+x+y=0
=>xy+x+y+1=1
=>(xy+x)+(y+1)=1
=>x(y+1)+(y+1)=1
=>(x+1)(y+1)=1
Sau đó bn =>x+1 và y+1 thuộc Ư(1) rồi tính như trên nhé
c)xy-x-y+1=0
=>(x-1)y-x+1=0
=>(x-1)y-x-0+1=0
=>(x-1)(y-1)=0
- Với x-1=0 =>x=1 thì mọi y thuộc Z đều thỏa mãn (vì đề chỉ cho thuộc Z)
- Với y-1=0 =>y=1 thì mọi x thuộc Z đều thỏa mãn
d và e bn phân tích ra tính tương tự
Bài 2:
a)\(A=\frac{x+5}{x+1}=\frac{x+1+4}{x+1}=\frac{x+1}{x+1}+\frac{4}{x+1}=1+\frac{4}{x+1}\in Z\)
=>4 chia hết x+1
=>x+1 thuộc Ư(4)={1;-1;2;-2;4;-4}
Bạn thay x+1={1;-1;2;-2;4;-4} vào rồi tính tiếp
b)\(=\frac{2x+4}{x+3}=\frac{2\left(x+3\right)-2}{x+3}=\frac{2\left(x+3\right)}{x+3}-\frac{1}{x+3}=2-\frac{1}{x+3}\in Z\)
=>2 chia hết x+3
=>x+3 thuộc Ư(2)={1;-1;2-2} tự làm nhé
c)\(C=\frac{4x+4}{2x+4}=\frac{2\left(2x+4\right)-4}{2x+4}=\frac{2\left(2x+4\right)}{2x+4}-\frac{4}{2x+4}=2-\frac{4}{2x+4}\in Z\)
=>4 chia hết 2x+4
=>2x+4 thuộc Ư(4)={1;-1;2;-2;4;-4} tự tính tiếp nhé

\(\left|x+\frac{1}{2}\right|+\left|y-\frac{3}{4}\right|+\left|z-1\right|=0\) \(0\)
<=> \(\hept{\begin{cases}x+\frac{1}{2}=0\\y-\frac{3}{4}=0\\z-1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{3}{4}\\z=1\end{cases}}\)
\(\left|x-\frac{3}{4}\right|+\left|\frac{2}{5}-y\right|+\left|x-y+z\right|=0\)
<=> \(\hept{\begin{cases}x-\frac{3}{4}=0\\\frac{2}{5}-y=0\\x-y+z=0\end{cases}}\)
<=>\(\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{2}{5}\\\frac{3}{4}-\frac{2}{5}+z=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{2}{5}\\z=\frac{-7}{20}\end{cases}}\)
\(\left|x-\frac{2}{3}\right|+\left|x+y+\frac{3}{4}\right|+\left|y-z-\frac{5}{6}\right|=0\)
<=> \(\hept{\begin{cases}x-\frac{2}{3}=0\\x+y+\frac{3}{4}=0\\y-z-\frac{5}{6}=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{2}{3}\\y=\frac{-17}{12}\\z=\frac{-9}{4}\end{cases}}\)
\(\left|x-\frac{1}{2}\right|+\left|xy-\frac{3}{4}\right|+\left|2x-3y-z\right|=0\)
<=> \(\hept{\begin{cases}x-\frac{1}{2}=0\\xy-\frac{3}{4}=0\\2x-3y-z=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{3}{4}:\frac{1}{2}=\frac{3}{2}\\z=\frac{-7}{2}\end{cases}}\)
các câu còn lại tương tự

\(3x^2-2x-8=0\\ \Leftrightarrow3x^2-2x=8\\ E=6x^2-4x+9\\ =3x^2+3x^2-2x-2x-8+17\\ =\left(3x^2-2x-8\right)+\left(3x^2-2x+17\right)\\ =3x^2-2x+17\\ =\left(3x^2-2x\right)+17=8+17=25\)
\(x+y=0\\ \Leftrightarrow y=-x\\ D=x^4-y^4+x^3y-xy^3\\ =\left(x^2+y^2\right)\left(x^2-y^2\right)+xy\left(x^2-y^2\right)\\ =\left(x^2+y^2+xy\right)\left(x^2-y^2\right)\\ =\left(x^2+\left(-x\right)^2+x.\left(-x\right)\right)\left(x^2-\left(-x\right)^2\right)\\ =\left(x^2+x^2-x^2\right)\left(x^2-x^2\right)\\ =x^2.0=0\)

1. \(\frac{x+2}{5}=\frac{3x-2}{2}\)
=> 2(x + 2) = 5(3x - 2)
=> 2x + 4 = 15x - 10
=> 2x - 15x = -10 - 4
=> -13x = -14
=> x = 13/4
Bài 1: \(\frac{x+2}{5}=\frac{3x-2}{2}\)
<=> 2x+4=15x-10
<=> 2x-15x=-10-4
<=> -13x=-14
<=> x=\(\frac{14}{13}\)
Bài 2: xy+2x+y=0
<=> (xy+2x)+(y+2)=2
<=> x(y+2)+(y+2)=2
<=> (y+2)(x+1)=2
Vì x,y nguyên => y+2; x+1 nguyên => y+2; x+1 nguyên
=> y+2; x+1 \(\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
ta có bảng
x+1 | -2 | -1 | 1 | 2 |
x | -3 | -2 | 0 | 1 |
y+2 | -1 | -2 | 2 | 1 |
y | -3 | -4 | 0 | -1 |
1: xy+x+y+1=0
=>x(y+1)+(y+1)=0
=>(x+1)(y+1)=0
=>\(\begin{cases}x+1=0\\ y+1=0\end{cases}\Rightarrow\begin{cases}x=-1\\ y=-1\end{cases}\)
2: xy+x+6=0
=>x(y+1)=-6
=>(x;y+1)∈{(1;-6);(-6;1);(-1;6);(6;-1);(2;-3);(-3;2);(-2;3);(3;-2)}
=>(x;y)∈{(1;-7);(-6;0);(-1;5);(6;-2);(2;-4);(-3;1);(-2;2);(3;-3)}
3: -xy-x-y-1=0
=>xy+x+y+1=0
=>x(y+1)+(y+1)=0
=>(x+1)(y+1)=0
=>\(\begin{cases}x+1=0\\ y+1=0\end{cases}\Rightarrow\begin{cases}x=-1\\ y=-1\end{cases}\)
4: xy-x-y+1=0
=>x(y-1)-(y-1)=0
=>(x-1)(y-1)=0
=>\(\begin{cases}x-1=0\\ y-1=0\end{cases}\Rightarrow\begin{cases}x=1\\ y=1\end{cases}\)
5: xy+2x+y+11=0
=>x(y+2)+y+2+9=0
=>x(y+2)+(y+2)=-9
=>(x+1)(y+2)=-9
=>(x+1;y+2)∈{(1;-9);(-9;1);(-1;9);(9;-1);(3;-3);(-3;3)}
=>(x;y)∈{(0;-11);(-10;-1);(-2;7);(8;-3);(2;-5);(-4;1)}
6: ĐKXĐ: x<>0
\(\frac{5}{x}+\frac{y}{4}=\frac18\)
=>\(\frac{20+xy}{4x}=\frac18\)
=>\(\frac{40+2xy}{8x}=\frac{x}{8x}\)
=>40+2xy=x
=>x-2xy=40
=>x(1-2y)=40
=>x(2y-1)=-40
mà 2y-1 lẻ(do y nguyên)
nên (x;2y-1)∈{(-40;1);(40;-1);(8;-5);(-8;5)}
=>(x;2y)∈{(-40;2);(40;0);(8;-4);(-8;6)}
=>(x;y)∈{(-40;1);(40;0);(8;-2);(-8;3)}
8: (x+2)(y-3)=-3
=>(x+2;y-3)∈{(1;-3);(-3;1);(-1;3);(3;-1)}
=>(x;y)∈{(-1;0);(-5;4);(-3;6);(1;2)}