
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(3a^2-6ab+3b^2-12c^2=3\left(a^2-2ab+b^2-4c^2\right)=3\left[\left(a-b\right)^2-\left(2c\right)^2\right]=3\left(a-b-2c\right)\left(a-b+2c\right)\)

a: \(2x^2+2x+3\)
\(=2\left(x^2+x+\frac32\right)\)
\(=2\left(x^2+x+\frac14+\frac54\right)\)
\(=2\left(x+\frac12\right)^2+\frac52\ge\frac52\forall x\)
=>\(\frac{3}{2x^2+2x+3}\le3:\frac52=\frac65\forall x\)
Dấu '=' xảy ra khi \(x+\frac12=0\)
=>\(x=-\frac12\)
b: \(-x^2+2x-2\)
\(=-\left(x^2-2x+2\right)\)
\(=-\left(x^2-2x+1+1\right)\)
\(=-\left(x-1\right)^2-1\le-1\forall x\)
=>\(\frac{1}{-x^2+2x-2}\ge\frac{1}{-1}=-1\forall x\)
Dấu '=' xảy ra khi x-1=0
=>x=1
c: \(3x^2+4x+15\)
\(=3\left(x^2+\frac43x+5\right)\)
\(=3\left(x^2+2\cdot x\cdot\frac23+\frac49+\frac{41}{9}\right)\)
\(=3\left(x+\frac23\right)^2+\frac{41}{3}\ge\frac{41}{3}\forall x\)
=>\(\frac{5}{3x^2+4x+15}\le5:\frac{41}{3}=\frac{15}{41}\)
=>\(-\frac{5}{3x^2+4x+15}\ge-\frac{15}{41}\forall x\)
Dấu '=' xảy ra khi \(x+\frac23=0\)
=>\(x=-\frac23\)
d: \(-4x^2+8x-5\)
\(=-4\left(x^2-2x+\frac54\right)\)
\(=-4\left(x^2-2x+1+\frac14\right)\)
\(=-4\left(x-1\right)^2-1<=-1\forall x\)
=>\(\frac{2}{-4x^2+8x-5}\ge\frac{2}{-1}=-2\forall x\)
Dấu '=' xảy ra khi x-1=0
=>x=1

a: \(x^2-x+1\)
\(=x^2-x+\frac14+\frac34\)
\(=\left(x-\frac12\right)^2+\frac34\ge\frac34>0\forall x\)
b: \(x^2+x+2\)
\(=x^2+x+\frac14+\frac74\)
\(=\left(x+\frac12\right)^2+\frac74\ge\frac74>0\forall x\)
c: \(-a^2+a-3\)
\(=-\left(a^2-a+3\right)\)
\(=-\left(a^2-a+\frac14+\frac{11}{4}\right)\)
\(=-\left(a-\frac12\right)^2-\frac{11}{4}\le-\frac{11}{4}<0\forall a\)
d:Đặt \(A=\frac{3x^2-x+1}{-4x^2+2x-1}\)
\(3x^2-x+1\)
\(=3\left(x^2-\frac13x+\frac13\right)\)
\(=3\left(x^2-2\cdot x\cdot\frac16+\frac{1}{36}+\frac{11}{36}\right)\)
\(=3\left(x-\frac16\right)^2+\frac{11}{12}\ge\frac{11}{12}>0\forall x\) (1)
\(-4x^2+2x-1\)
\(=-4\left(x^2-\frac12x+\frac14\right)\)
\(=-4\left(x^2-2\cdot x\cdot\frac14+\frac{1}{16}+\frac{3}{16}\right)\)
\(=-4\left(x-\frac14\right)^2-\frac34\le-\frac34<0\forall x\) (2)
Từ (1),(2) suy ra \(\frac{3x^2-x+1}{-4x^2+2x-1}<0\forall x\)
=>A<0 với mọi x

Gọi quãng đường từ xã KN tới KA là x (x > 0)
Thời gian lúc đi là : x/15 (h)
Thời gian lúc về là: x/12 (h)
Thời gian lúc về nhiều hơn lúc đi là: 45' = 3/4 (h)
Ta có phương trình: \(\dfrac{x}{12}-\dfrac{x}{15}=\dfrac{3}{4}\Leftrightarrow5x-4x=45\Leftrightarrow x=45\left(km\right)\)
Vậy quãng đường từ xã KN đến KA dài 45km.
Gọi:
Độ dài quãng đường từ Kỳ Ninh tới Kỳ Anh là: S (km) với S nguyên dương.
Thời gian lúc đi là: \(\dfrac{S}{15}\) (h).
Thời gian lúc về là: \(\dfrac{S}{12}\) (h).
Theo đề bài, ta có:
\(\dfrac{S}{12}\) - \(\dfrac{S}{15}\)= \(\dfrac{45}{60}\)=\(\dfrac{3}{4}\)
=> \(\dfrac{S}{60}\)=\(\dfrac{3}{4}\)
=> S= \(\dfrac{3.60}{4}\)=45
vậy độ dài quãng đường từ Kỳ Ninh đến Kỳ Anh là 45 km.

Hai câu là hoàn toàn giống nhau, mình làm câu a, câu b bạn tự làm tương tự:
ĐKXĐ: ...
Nhận thấy \(x=0\) ko phải nghiệm, pt tương đương:
\(\frac{4}{4x+\frac{7}{x}-8}+\frac{3}{4x+\frac{7}{x}-10}=1\)
Đặt \(4x+\frac{7}{x}-10=t\)
\(\Leftrightarrow\frac{4}{t+2}+\frac{3}{t}=1\Leftrightarrow4t+3\left(t+2\right)=t\left(t+2\right)\)
\(\Leftrightarrow t^2-5t-6=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}4x+\frac{7}{x}-10=-1\\4x+\frac{7}{x}-10=6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x^2-9x+7=0\\4x^2-16x+7=0\end{matrix}\right.\) (bấm casio)
\(=\dfrac{-4}{15}-\dfrac{18}{19}-\dfrac{20}{19}-\dfrac{11}{15}=-1-1=-2\)
\(\left(\dfrac{-4}{15}-\dfrac{18}{19}\right)-\left(\dfrac{20}{19}+\dfrac{11}{15}\right)\)
\(=\dfrac{-4}{15}-\dfrac{18}{19}-\dfrac{20}{19}-\dfrac{11}{15}\)
\(=\left(\dfrac{-4}{15}-\dfrac{11}{15}\right)-\left(\dfrac{18}{19}+\dfrac{20}{19}\right)\)
\(=-1-2\)
\(=-3\)