Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

một đòn bẫy dài một mét .đặt ở đâu để có thể dùng 3600n có thể nâng tảng đá nặng 120kg?

1/ (2x+3)(x-4)+(x+5)(x-2)=(3x-5)(x-4)
<=> 2x2 - 8x + 3x - 12 + x2 - 2x + 5x - 10 - 3x2 + 12x + 5x - 20 = 0
<=> 15x - 20 = 0
<=> 15x = 20
<=> x = 4/3

+) (5x-1). (2x+3)-3. (3x-1)=0
10x^2+15x-2x-3 - 9x+3=0
10x^2 +8x=0
2x(5x+4)=0
=> x=0 hoặc x= -4/5
+) x^3 (2x-3)-x^2 (4x^2-6x+2)=0
2x^4 -3x^3 -4x^4 + 6x^3 - 2x^2=0
-2x^4 + 3x^3-2x^2=0
x^2(-2x^2+x-2)=0
-2x^2(x-1)^2=0
=> x=0 hoặc x=1
+) x (x-1)-x^2+2x=5
x^2 -x -x^2+2x=5
x=5
+) 8 (x-2)-2 (3x-4)=25
8x - 16-6x+8=25
2x=33
x=33/2

\(2x\left(x-3\right)-x+3=0\)
<=> \(2x\left(x-3\right)-\left(x-3\right)=0\)
<=> \(\left(x-3\right)\left(2x-1\right)=0\)
<=> \(\orbr{\begin{cases}x=3\\x=\frac{1}{2}\end{cases}}\)
Vậy...

\(a.\left(x-2\right)^2-\left(x+3\right)^2-4\left(x+1\right)=5\)
\(\left(x^2-4x+4\right)-\left(x^2+6x+9\right)-4x-4=5\)
\(\left(-4x-6x\right)+\left(4-9\right)-4x-4=5\)
\(-10x-5-4x-4=5\)
\(-14x-9=5\)
\(-14x=14\Rightarrow x=-1\)
\(b.\left(2x-3\right)\left(2x+3\right)-\left(x-1\right)^2-3x\left(x-5\right)=-44\)
\(4x^2-9-\left(x^2-2x+1\right)-\left(3x^2-15x\right)=-44\)
\(4x^2-9-x^2+2x-1-3x^2+15x=-44\)
\(17x-10=-44\)
\(17x=-34\Rightarrow x=-2\)
\(c.\left(5x+1\right)^2-\left(5x-3\right)\left(5x+3\right)=30\)
\(25x^2+10x+1-\left(25x^2-9\right)=30\)
\(10x+10=30\)
\(10x=20\Rightarrow x=2\)
\(d.\left(x+3\right)^2+\left(x-2\right)\left(x+2\right)-2\left(x-1\right)^2=7\)
\(\left(x^2+6x+9\right)+\left(x^2-4\right)-2\left(x^2-2x+1\right)=7\)
\(2x^2+6x+5-2x^2+4x-2=7\)
\(10x+3=7\)
\(10x=4\Rightarrow x=\frac{4}{10}=\frac25\)
\(f.\left(3x-8\right)^2=0\)
\(3x-8=0\Rightarrow x=\frac83\)
\(e.6\left(x+1\right)^2-2\left(x+1\right)+2\left(x-1\right)\left(x^2+x+1\right)=0\)
\(6\left(x^2+2x+1\right)-2x-2+2\left(x^3-1\right)=0\)
\(6x^2+12x+6-2x-2+2x^3-2=0\)
\(2x^3+6x^2+10x+2=0\)
\(\Rightarrow x\approx-0,23\)