
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



1B:
a: \(x^2+2xy+x+2y\)
=x(x+2y)+(x+2y)
=(x+2y)(x+1)
b: \(2xy+yz+2x+z\)
=y(2x+z)+(2x+z)
=(2x+z)(y+1)
c: \(y^2-2y-z^2-2z\)
\(=\left(y^2-z^2\right)-2\left(y+z\right)\)
=(y+z)(y-z)-2(y+z)
=(y+z)(y-z-2)
d: \(x^3-x-y+y^3\)
\(=\left(x^3+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2-1\right)\)
2A:
a: \(x^2-2x+1-y^2\)
\(=\left(x-1\right)^2-y^2\)
=(x-1-y)(x-1+y)
b: \(x^2-y^2+4y-4\)
\(=x^2-\left(y^2-4y+4\right)\)
\(=x^2-\left(y-2\right)^2\)
=(x-y+2)(x+y-2)
c: \(y^2+6y-4z^2+9\)
\(=\left(y^2+6y+9\right)-\left(2z\right)^2\)
\(=\left(y+3\right)^2-\left(2z\right)^2=\left(y+3+2z\right)\left(y+3-2z\right)\)
d: \(x^2-y^2+10yz-25z^2\)
\(=x^2-\left(y^2-10yz+25z^2\right)\)
\(=x^2-\left(y-5z\right)^2=\left(x-y+5z\right)\left(x+y-5z\right)\)
2B:
a: \(4x^2-4x+1-25y^2\)
\(=\left(4x^2-4x+1\right)-\left(5y\right)^2\)
\(=\left(2x-1\right)^2-\left(5y\right)^2=\left(2x-1-5y\right)\left(2x-1+5y\right)\)
b: \(9y^2-z^2+6z-9\)
\(=\left(3y\right)^2-\left(z^2-6z+9\right)\)
\(=\left(3y\right)^2-\left(z-3\right)^2\)
=(3y-z+3)(3y+z-3)
c: \(x^2-4z^2+4x+4\)
\(=\left(x^2+4x+4\right)-\left(2z\right)^2\)
\(=\left(x+2\right)^2-\left(2z\right)^2\)
=(x+2+2z)(x+2-2z)
d: \(4x^2-y^2+4xz+z^2\)
\(=\left(4x^2+4xz+z^2\right)-y^2\)
\(=\left(2x+z\right)^2-y^2\)
=(2x+z-y)(2x+z+y)
3A:
a: \(x^2-2xy+y^2-a^2+2ab-b^2\)
\(=\left(x^2-2xy+y^2\right)-\left(a^2-2ab+b^2\right)\)
\(=\left(x-y\right)^2-\left(a-b\right)^2\)
=(x-y-a+b)(x-y+a-b)
c: \(x^3+y^3+3x^2-3xy+3y^2\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+3\left(x^2-xy+y^2\right)\)
\(=\left(x^2-xy+y^2\right)\left(x+y+3\right)\)

Bài 1:
Vận tốc cano khi dòng nước lặng là: $25-2=23$ (km/h)
Bài 2:
Đổi 1 giờ 48 phút = 1,8 giờ
Độ dài quãng đường AB: $1,8\times 25=45$ (km)
Vận tốc ngược dòng là: $25-2,5-2,5=20$ (km/h)
Cano ngược dòng từ B về A hết:
$45:20=2,25$ giờ = 2 giờ 15 phút.

a: Xét ΔACB và ΔEBC có
\(\widehat{ACB}=\widehat{EBC}\)
BC chung
\(\widehat{CBA}=\widehat{BCE}\)
Do đó:ΔACB=ΔEBC
b: ta có; ΔACB=ΔEBC
nên AC=EB
=>BE=BD
hay ΔBED cân tại B
c: Ta có: ΔBED cân tại B
nên \(\widehat{BDC}=\widehat{BEC}\)
=>\(\widehat{BDC}=\widehat{ACD}\)

6-4x=2(3-2x)= -2(2x-3)
có chung 2x-3 nhé , PT ở thành (2x-3)^2-2(2x-3) =(2x-3)(2x-3-2) =(2x-3)(2x-1)
\(\left(2x-3\right)^2+6-4x\)
\(=4x^2-12x+9+6-4x\)
\(=4x^2-16x+15\)
\(=\left(4x^2-10x\right)-\left(6x-15\right)\)
\(=2x\left(2x-5\right)-3\left(2x-5\right)\)
\(=\left(2x-3\right)\left(2x-5\right)\)

Bài 1:
a.
$a^3-a^2c+a^2b-abc=a^2(a-c)+ab(a-c)$
$=(a-c)(a^2+ab)=(a-c)a(a+b)=a(a-c)(a+b)$
b.
$(x^2+1)^2-4x^2=(x^2+1)^2-(2x)^2=(x^2+1-2x)(x^2+1+2x)$
$=(x-1)^2(x+1)^2$
c.
$x^2-10x-9y^2+25=(x^2-10x+25)-9y^2$
$=(x-5)^2-(3y)^2=(x-5-3y)(x-5+3y)$
d.
$4x^2-36x+56=4(x^2-9x+14)=4(x^2-2x-7x+14)$
$=4[x(x-2)-7(x-2)]=4(x-2)(x-7)$
Bài 2:
a. $(3x+4)^2-(3x-1)(3x+1)=49$
$\Leftrightarrow (3x+4)^2-[(3x)^2-1]=49$
$\Leftrightarrow (3x+4)^2-(3x)^2=48$
$\Leftrightarrow (3x+4-3x)(3x+4+3x)=48$
$\Leftrightarrow 4(6x+4)=48$
$\Leftrightarrow 6x+4=12$
$\Leftrightarrow 6x=8$
$\Leftrightarrow x=\frac{4}{3}$
b. $x^2-4x+4=9(x-2)$
$\Leftrightarrow (x-2)^2=9(x-2)$
$\Leftrightarrow (x-2)(x-2-9)=0$
$\Leftrightarrow (x-2)(x-11)=0$
$\Leftrightarrow x-2=0$ hoặc $x-11=0$
$\Leftrightarrow x=2$ hoặc $x=11$
c.
$x^2-25=3x-15$
$\Leftrightarrow (x-5)(x+5)=3(x-5)$
$\Leftrightarrow (x-5)(x+5-3)=0$
$\Leftrightarrow (x-5)(x+2)=0$
$\Leftrightarrow x-5=0$ hoặc $x+2=0$
$\Leftrightarrow x=5$ hoặc $x=-2$

Đặt tính \(2n^2-n+2\) : \(2n+1\) sẽ bằng n - 1 dư 3
Để chia hết thì 3 phải chia hết cho 2n + 1 hay 2n + 1 là ước của 3
Ư(3) = {\(\pm\) 3; \(\pm\) 1}
\(2n+1=1\Leftrightarrow2n=0\Leftrightarrow n=0\)
\(2n+1=-1\Leftrightarrow2n=-2\Leftrightarrow n=-1\)
\(2n+1=3\Leftrightarrow2n=2\Leftrightarrow n=1\)
\(2n+1=-3\Leftrightarrow2n=-4\Leftrightarrow n=-2\)
Vậy \(n=\left\{0;-2;\pm1\right\}\)
a: \(A=x^2-40x+400+5=\left(x-20\right)^2+5\ge5\forall x\)
Dấu '=' xảy ra khi x=20
b: \(=-\left(x^2+30x+255\right)=-\left(x+15\right)^2-30\le-30\forall x\)
Dấu '=' xảy ra khi x=-15