
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: Xét tứ giác SAOB có \(\hat{SAO}+\hat{SBO}=90^0+90^0=180^0\)
nên SAOB là tứ giác nội tiếp đường tròn đường kính SO
b: ΔOMN cân tại O
mà OI là đường trung tuyến
nên OI⊥MN tại I
Ta có: \(\hat{OIS}=\hat{OAS}=\hat{OBS}=90^0\)
=>O,I,A,S,B cùng thuộc đường tròn đường kính OS
c: Xét (O) có
SA,SB là các tiếp tuyến
Do đó: SA=SB
=>S nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1),(2) suy ra SO là đường trung trực của AB
=>SO⊥AB tại H và H là trung điểm của AB
Xét ΔSAO vuông tại A có AH là đường cao
nên \(SH\cdot SO=SA^2\)
d: Xét (O) có
\(\hat{SAM}\) là góc tạo bởi tiếp tuyến AS và dây cung AM
\(\hat{ANM}\) là góc nội tiếp chắn cung AM
Do đó: \(\hat{SAM}=\hat{ANM}\)
Xét ΔSAM và ΔSNA có
\(\hat{SAM}=\hat{SNA}\)
góc ASM chung
Do đó: ΔSAM~ΔSNA
=>\(\frac{SA}{SM}=\frac{SN}{SA}\)
=>\(SA^2=SM\cdot SN\)

Gọi (d): y = ax + b (a ≠ 0) là phương trình đường thẳng AB
Do (d) đi qua A nên thay tọa độ điểm A(3; 4) vào (d) ta được:
3a + b = 4
b = 4 - 3a (1)
Do (d) đi qua điểm B nên thay tọa độ điểm B(5; 2) vào (d) ta được:
5a + b = 2 (2)
Thế (1) vào (2) ta được:
5a + 4 - 3a = 2
2a = 2 - 4
2a = -2
a = -2 : 2
a = -1
Thế a = -1 vào (1) ta được:
b = 4 - 3.(-1) = 7
Vậy phương trình đường thẳng AB là:
(d): y = -x + 7



Ta có: \(\frac{\sqrt{x}+2}{x-1}-\frac{\sqrt{x}-2}{x-2\sqrt{x}+1}\)
\(=\frac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)^2}\)
\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}\)
\(=\frac{x+\sqrt{x}-2-\left(x-\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}=\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}\)
Ta có: \(P=\left(\frac{\sqrt{x}+2}{x-1}-\frac{\sqrt{x}-2}{x-2\sqrt{x}+1}\right):\frac{4x}{\left(x-1\right)^2}\)
\(=\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}\cdot\frac{\left(x-1\right)^2}{4x}\)
\(=\frac{1}{2\sqrt{x}}\cdot\left(\sqrt{x}-1\right)^2\cdot\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{2\sqrt{x}}\)

18: Gọi thời gian người thứ nhất và người thứ hai hoàn thành công việc khi làm một mình lần lượt là x(giờ) và y(giờ)
(ĐIều kiện: x>0; y>0)
Trong 1 giờ, người thứ nhất làm được: \(\frac{1}{x}\) (công việc)
Trong 1 giờ, người thứ hai làm được: \(\frac{1}{y}\) (công việc)
Trong 1 giờ, hai người làm được: \(\frac{1}{16}\) (công việc)
Do đó, ta có: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{16}\left(1\right)\)
Trong 3 giờ, người thứ nhất làm được: \(3\cdot\frac{1}{x}=\frac{3}{x}\) (công việc)
Trong 6 giờ, người thứ hai làm được: \(6\cdot\frac{1}{y}=\frac{6}{y}\) (công việc)
Nếu người thứ nhất làm trong 3 giờ và người thứ hai làm trong 6 giờ thì hai người làm được 25% công việc nên ta có: \(\frac{3}{x}+\frac{6}{y}=\frac14\left(2\right)\)
Từ (1),(2) ta có hệ phương trình:
\(\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{16}\\ \frac{3}{x}+\frac{6}{y}=\frac14\end{cases}\Rightarrow\begin{cases}\frac{6}{x}+\frac{6}{y}=\frac{6}{16}=\frac38\\ \frac{3}{x}+\frac{6}{y}=\frac14\end{cases}\)
=>\(\begin{cases}\frac{6}{x}+\frac{6}{y}-\frac{3}{x}-\frac{6}{y}=\frac38-\frac14=\frac18\\ \frac{1}{x}+\frac{1}{y}=\frac{1}{16}\end{cases}\Rightarrow\begin{cases}\frac{3}{x}=\frac18\\ \frac{1}{x}+\frac{1}{y}=\frac{1}{16}\end{cases}\)
=>\(\begin{cases}x=24\\ \frac{1}{y}=\frac{1}{16}-\frac{1}{24}=\frac{3}{48}-\frac{2}{48}=\frac{1}{48}\end{cases}\Rightarrow\begin{cases}x=24\\ y=48\end{cases}\) (nhận)
Vậy: thời gian người thứ nhất và người thứ hai hoàn thành công việc khi làm một mình lần lượt là 24(giờ) và 48(giờ)
17: Gọi khối lượng thóc đơn vị thứ nhất và đơn vị thứ hai thu hoạch được trong năm ngoái lần lượt là x(tấn) và y(tấn)
(Điều kiện: x>0; y>0)
Năm nay, đơn vị thứ nhất sản xuất được: \(x\left(1+15\%\right)=1,15x\) (tấn)
Năm nay, đơn vị thứ hai sản xuất được:
\(y\left(1+12\%\right)=1,12y\) (tấn)
Năm nay, hai đơn vị sản xuất được 4095 tấn thóc nên 1,15x+1,12y=4095(1)
Năm ngoái, hai đơn vị sản xuất được 3600 tấn thóc nên x+y=3600(2)
Từ (1),(2) ta có hệ phương trình:
\(\begin{cases}1,15x+1,12y=4095\\ x+y=3600\end{cases}\Rightarrow\begin{cases}1,15x+1,12y=4095\\ 1,15x+1,15y=4140\end{cases}\)
=>\(\begin{cases}1,15x+1,15y-1,15x-1,12y=4140-4095=45\\ x+y=3600\end{cases}\)
=>\(\begin{cases}0,03y=45\\ x+y=3600\end{cases}\Rightarrow\begin{cases}y=45:0,03=1500\\ x=3600-1500=2100\end{cases}\) (nhận)
Năm nay, đơn vị thứ nhất sản xuất được: \(2100\cdot1,15=2415\) tấn
năm nay, đơn vị thứ hai sản xuất được: \(1500\cdot1,12=1680\) (tấn)

- Có \(2\) cách chọn điểm màu đỏ (\(A\) hoặc \(B\) )
- Có \(3\) cách chọn điểm màu vàng (\(C;D\) hoặc \(E\) )
- Có \(1\) cách chọn điểm màu xanh \(\left(F\right)\)
Tổng số tam giác có thể tạo ra là \(2.3.1=6\) (tam giác)
- Điểm màu đỏ phải là \(B\) : 1 cách chọn
- Điểm màu vàng (\(C;D\) hoặc \(E\) ) : \(3\) cách chọn
- Điểm màu xanh \(\left(F\right)\) : \(1\) cách chọn
Số tam giác chứa điểm \(B\) là \(1.3.1=3\) (tam giác)
Xác suất của biến cố \(X\) là số tam giác chứa điểm \(B\) chia cho tổng số tam giác có thể tạo ra :
\(P\left(X\right)=\frac36=\frac12\)