loading...
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(x^2-1\right)'=2x;\left[\left(x-2\right)^4\right]'=4\cdot\left(x-2\right)^3\cdot\left(x-2\right)'=4\left(x-2\right)^3\)

\(f''\left(x\right)=\left(x^2-1\right)'\left(x-2\right)^4+\left(x^2-1\right)\left[\left(x-2\right)^4\right]'\)

\(=2x\left(x-2\right)^4+\left(x^2-1\right)\cdot4\left(x-2\right)^3\)

\(=2\left(x-2\right)^3\left[x\left(x-2\right)+2x^2-2\right]\)

\(=2\left(x-2\right)^3\left(3x^2-2x-2\right)\)

Đặt \(f'\left(x\right)=0\)

=>\(\left[{}\begin{matrix}x=1\\x=-1\\x=2\end{matrix}\right.\)

\(f''\left(2\right)=0;f''\left(1\right)=2>0;f''\left(-1\right)=-162< 0\)

=>Chọn B 

 

NV
20 tháng 12 2022

4.

Đáp án A đúng

\(y'=9x^2+3>0;\forall v\in R\)

6.

Đáp án  B đúng

\(y'=3x^2-3=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)

\(\Rightarrow\) Hàm đồng biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(1;+\infty\right)\)

Do \(\left(2;+\infty\right)\subset\left(1;+\infty\right)\) nên hàm cũng đồng biến trên \(\left(2;+\infty\right)\)

ĐKXĐ: \(2x-x^2\ge0\)

=>\(x^2-2x\le0\)

=>x(x-2)<=0

=>0<=x<=2

0<=x<=2 nên 0>=-x>=-2

=>0>=-x+1>=-2+1

=>0>=-x+1>=-1

\(y=\sqrt{2x-x^2}-x\)

=>\(y^{\prime}=\frac{\left(2x-x^2\right)^{\prime}}{2\cdot\sqrt{2x-x^2}}-1=\frac{2-2x}{2\cdot\sqrt{2x-x^2}}-1=\frac{1-x}{\sqrt{2x-x^2}}-1\)

Đặt y'<0

=>\(\frac{1-x}{\sqrt{2x-x^2}}-1<0\) (1)

=>\(\frac{1-x}{\sqrt{2x-x^2}}<1\)

TH1: 1-x<0

=>x>1

=>1<x<=2

Khi đó, ta sẽ có:\(\frac{1-x}{\sqrt{2x-x^2}}<0\) <1

=>(1) luôn đúng với mọi x>1

Kết hợp ĐKXĐ, ta được: 1<x<=2(2)

TH2: 1-x>=0

=>x<=1

(1) sẽ tương đương với: \(\frac{\left(1-x\right)^2}{2x-x^2}<1\)

=>\(\left(1-x\right)^2<2x-x^2\)

=>\(x^2-2x+1-2x+x^2\le0\)

=>\(2x^2-4x+1\le0\)

=>\(x^2-2x+\frac12\le0\)

=>\(x^2-2x+1-\frac12\le0\)

=>\(\left(x-1\right)^2\le\frac12\)

=>\(-\frac{\sqrt2}{2}\le x-1\le\frac{\sqrt2}{2}\)

=>\(\frac{-\sqrt2+2}{2}\le x\le\frac{\sqrt2+2}{2}\)

Kết hợp ĐKXĐ, ta được: \(\frac{-\sqrt2+2}{2}\le x\le\frac{\sqrt2+2}{2}\)

=>0,29<x<1,71(3)

Từ (2),(3) suy ra Hàm số nghịch biến trên khoảng (1;2)

=>Chọn C

17 tháng 9

ôi trời nhìn khó vậy

jubyuibgi

ĐKXĐ: \(2x-x^2\ge0\)

=>\(x^2-2x\le0\)

=>x(x-2)<=0

=>0<=x<=2

0<=x<=2 nên 0>=-x>=-2

=>0>=-x+1>=-2+1

=>0>=-x+1>=-1

\(y=\sqrt{2x-x^2}-x\)

=>\(y^{\prime}=\frac{\left(2x-x^2\right)^{\prime}}{2\cdot\sqrt{2x-x^2}}-1=\frac{2-2x}{2\cdot\sqrt{2x-x^2}}-1=\frac{1-x}{\sqrt{2x-x^2}}-1\)

Đặt y'<0

=>\(\frac{1-x}{\sqrt{2x-x^2}}-1<0\) (1)

=>\(\frac{1-x}{\sqrt{2x-x^2}}<1\)

TH1: 1-x<0

=>x>1

=>1<x<=2

Khi đó, ta sẽ có:\(\frac{1-x}{\sqrt{2x-x^2}}<0\) <1

=>(1) luôn đúng với mọi x>1

Kết hợp ĐKXĐ, ta được: 1<x<=2(2)

TH2: 1-x>=0

=>x<=1

(1) sẽ tương đương với: \(\frac{\left(1-x\right)^2}{2x-x^2}<1\)

=>\(\left(1-x\right)^2<2x-x^2\)

=>\(x^2-2x+1-2x+x^2\le0\)

=>\(2x^2-4x+1\le0\)

=>\(x^2-2x+\frac12\le0\)

=>\(x^2-2x+1-\frac12\le0\)

=>\(\left(x-1\right)^2\le\frac12\)

=>\(-\frac{\sqrt2}{2}\le x-1\le\frac{\sqrt2}{2}\)

=>\(\frac{-\sqrt2+2}{2}\le x\le\frac{\sqrt2+2}{2}\)

Kết hợp ĐKXĐ, ta được: \(\frac{-\sqrt2+2}{2}\le x\le\frac{\sqrt2+2}{2}\)

=>0,29<x<1,71(3)

Từ (2),(3) suy ra Hàm số nghịch biến trên khoảng (1;2)

=>Chọn C