Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\)
\(\Rightarrow ac-ad=ac-cd\)
\(\Rightarrow a\left(c-d\right)=c\left(a-d\right)\)
\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\left(đpcm\right)\)
bạn dùng phương pháp suy ngươc nha . mình thử bạn xem bạn có làm được ko.
mình suy từ kết quả lên đề bài cho nha

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}.\frac{c}{d}=\frac{a^2}{b^2}\)
Ta có :
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{c+d}\)
\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{c}{d}\right)^2=\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{ac}{bd}=\frac{a^2+b^2}{c^2+d^2}\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\)
\(\Rightarrow bd-ad=bd-bc\)
\(\Rightarrow d\left(b-a\right)=b\left(d-c\right)\)
\(\Rightarrow\frac{b-a}{b}=\frac{d-c}{d}\left(đpcm\right)\)
Do a/b = c/d
=> 1 - a/b = 1 - c/d
=> b/b - a/b = d/d - c/d
=> b - a/b = d - c/d

\(\frac{a}{b}=\frac{c}{d}\)=\(\frac{a}{c}=\frac{b}{d}\)=>\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)(2)
=>\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)(3)
=>\(\frac{a+b}{c+d}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)(4)
=>Từ (1),(2),(3),(4)=>\(\frac{a}{b}=\frac{a^2-b^2}{c^2-d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)(đpcm)

Bìa này đâu cần : \(\frac{a}{b}=\frac{c}{d}\)
Ta chứng minh ngược :
\(\frac{3a+2016b}{3c+2016d}=\frac{a-2b}{c-2d}\)
\(\Rightarrow\left(3c+2016b\right)\left(c-2d\right)=\left(3c+2016d\right)\left(a-2b\right)\)
\(\Rightarrow3ac-4032bd=3ac-4032bd\)( hiển nhiên đúng )
\(\Rightarrow\frac{3a+2016b}{3c+2016d}=\frac{a-2b}{c-2d}\)( đúng )
AB = CD và thành 3a + 2016 + ab =3434
= 3c + 3434 +cd= 4354
ds ________________________

TỈ lệ cần chứng minh
<br class="Apple-interchange-newline"><div id="inner-editor"></div>2015a−2016b2015c−2016d =2016a+2017b2016c+2017d
Vì ab =cd ⇒ac =bd = 2015a2015c =2016b2016d =2016a2016c =2017b2017d
Áp dụng t/c của dãy tỉ số bằng nhau ta có: \(\frac{a}{c}\)=\(\frac{2015a-2016b}{2015c-2016d}\)=\(\frac{2016a+2017b}{2016c+2017d}\)

đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
\(\frac{2a+c}{2b+d}=\frac{2bk+dk}{2b+d}=\frac{k\left(2b+d\right)}{2b+d}=k\)
\(\frac{2a-c}{2b-d}=\frac{2bk-dk}{2b-d}=\frac{k\left(2b-d\right)}{2b-d}=k\)
\(\Rightarrow\frac{2a+c}{2b+d}=\frac{2a-c}{2b-d}\)

\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{b}+1=\frac{c}{d}+1\Leftrightarrow\frac{a+b}{b}=\frac{c+d}{d}\Leftrightarrow1:\frac{a+b}{b}=1:\frac{c+d}{d}\Leftrightarrow\frac{b}{a+b}=\frac{d}{c+d}\)
Bài sau tương tự trừ 1 xong rồi lấy 1 chia cho 2 vế đó là ra
Ủng hộ nha cảm ơn
CHÚC BẠN HỌC TỐT
a, Đặt \(\frac{a}{b}=\frac{c}{d}\)\(=k\)
\(\Rightarrow a=bk\)\(;\)\(c=dk\)
Ta có : \(\frac{b}{a+b}=\frac{b}{bk+b}\)\(=\frac{1}{k+1}\left(1\right)\)
\(\frac{d}{c+d}=\frac{d}{dk+d}\)\(=\frac{1}{k+1}\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow\)\(\frac{b}{a+b}=\frac{d}{c+d}\)(ĐPCM)
b, Tương tự a \(\Rightarrow\frac{b}{a-b}=\frac{1}{k-1}=\frac{d}{c-d}\)(ĐPCM)
Đặt a/b = c/d = k thì a = bk ; c = dk.Ta có :
a+c / b+d = bk+dk / b+d = k(b+d) / b+d = k = a/b
Vậy a/b = c/d thì a/b = a+c / b+d