Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

(a1+a2+...+an)(1/a1+1/a2+...+1/an)=((√a1)^2+(√a2)^2+...+(√an)^2)((1/√a1)^2+(1√a2)^2+...+(1/√an)^2)≥(BDT Bunhiacopxki),(√a1*1/(√a1)+a2*1/(√a2)+...+√an*(1/√an))^2=(n số 1)➝(1+1+1+...+1)^2=(n*1)^2=n^2
1) Cho #Hỏi cộng đồng OLM #Toán lớp 9


2. voi a1,a2,a3 duong nhân từng vế của hai phương trình\(\left(a_1+a_2+a_3\right)\left(\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}\right)=9\)
áp dụng phương pháp bdt không chặt thì pt trên xảy ra <=>\(a_1=a_2=a_3=1\)
1.
tu pt 2 ta co
dk: y(y+1) khac 0
x(x+1)=72/y(y+1)
the vao 1 ta co
\(\frac{72}{y\left(y+1\right)}+y\left(y+1\right)=18\)
<=>\(y^2\left(y+1\right)^2-18y\left(y+1\right)+81-9=0\)
<=>\(\left[y\left(y+1\right)-9\right]^2=3\)
tu giai tiep