
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.




1.
a. Em tự giải
b.
\(\left\{{}\begin{matrix}2x+y=4m-1\\3x-2y=-m+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4x+2y=8m-2\\3x-2y=-m+9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7x=7m+7\\y=\dfrac{3x+m-9}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+1\\y=2m-3\end{matrix}\right.\)
Để \(x+y=7\Rightarrow m+1+2m-3=7\)
\(\Rightarrow3m=9\Rightarrow m=3\)
2.
a. Em tự giải
b.
Phương trình có 2 nghiệm khi:
\(\Delta'=\left(m+1\right)^2-\left(2m+10\right)=m^2-9\ge0\)
\(\Rightarrow\left[{}\begin{matrix}m\ge3\\m\le-3\end{matrix}\right.\)
Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m+10\end{matrix}\right.\)
Ta có:
\(P=x_1^2+x_2^2+8x_1x_2=\left(x_1+x_2\right)^2+6x_1x_2\)
\(=4\left(m+1\right)^2+6\left(2m+10\right)=4m^2+20m+64\)
\(=4\left(m^2+5m+6\right)+40=4\left(m+2\right)\left(m+3\right)+40\)
Do \(\left[{}\begin{matrix}m\ge3\\m\le-3\end{matrix}\right.\) \(\Rightarrow\left(m+2\right)\left(m+3\right)\ge0\)
\(\Rightarrow P\ge40\)
Vậy \(P_{min}=40\) khi \(m=-3\)
(Nếu bài này giải là \(4m^2+20m+64=\left(2m+5\right)^2+39\ge39\) là sai vì dấu = khi đó xảy ra tại \(m=-\dfrac{5}{2}\) ko thỏa mãn điều kiện \(\Delta\) để pt có nghiệm)

Chắc câu c quá, tại tổng 2 ô vuông của hình chữ nhật có 10 chấm tròn. =)
Em nghĩ là câu c vì thấy tổng của các chấm tròn ở mỗi miếng đều là 10.

Bài 6:
a: ĐKXĐ: x∉{0;2}
Ta có: \(\frac{1}{x}+\frac{2}{x\left(x-2\right)}=\frac{x+2}{x-2}\)
=>\(\frac{x-2}{x\left(x-2\right)}+\frac{2}{x\left(x-2\right)}=\frac{x\left(x+2\right)}{x\left(x-2\right)}\)
=>\(x-2+2=x\left(x+2\right)\)
=>x(x+2)=x
=>x(x+2)-x=0
=>x(x+2-1)=0
=>x(x+1)=0
=>\(\left[\begin{array}{l}x=0\left(loại\right)\\ x+1=0\end{array}\right.\Rightarrow x+1=0\)
=>x=-1(nhận )
b: ĐKXĐ: y∉{0;-5;5}
Ta có: \(\frac{y+5}{y^2-5y}-\frac{y-5}{2y^2+10y}=\frac{y+25}{2y^2-50}\)
=>\(\frac{y+5}{y\left(y-5\right)}-\frac{y-5}{2y\left(y+5\right)}=\frac{y+25}{2\left(y-5\right)\left(y+5\right)}\)
=>\(\frac{2\left(y+5\right)^2}{2y\left(y+5\right)\left(y-5\right)}-\frac{\left(y-5\right)^2}{2y\left(y+5\right)\left(y-5\right)}=\frac{y\left(y+25\right)}{2y\left(y+5\right)\left(y-5\right)}\)
=>\(2\left(y+5\right)^2-\left(y-5\right)^2=y\left(y+25\right)\)
=>\(2y^2+20y+50-y^2+10y-25=y^2+25y\)
=>\(y^2+30y+25=y^2+25y\)
=>5y=-25
=>y=-5(loại)
Bài 7:
a: ĐKXĐ: x<>1
\(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
=>\(\frac{1}{x-1}+\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{4}{x^2+x+1}\)
=>\(\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{4\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
=>\(x^2+x+1+2x^2-5=4\left(x-1\right)\)
=>\(3x^2+x-4=4x-4\)
=>\(3x^2-3x=0\)
=>3x(x-1)=0
=>x(x-1)=0
=>\(\left[\begin{array}{l}x=0\left(nhận\right)\\ x=1\left(loại\right)\end{array}\right.\)
b: ĐKXĐ: x<>2
Ta có: \(\frac{2x^2}{x^3-8}+\frac{x+1}{x^2+2x+4}=\frac{3}{x-2}\)
=>\(\frac{2x^2}{\left(x-2\right)\left(x^2+2x+4\right)}+\frac{\left(x+1\right)}{x^2+2x+4}=\frac{3}{x-2}\)
=>\(\frac{2x^2}{\left(x-2\right)\cdot\left(x^2+2x+4\right)}+\frac{\left(x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\frac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}\)
=>\(2x^2+\left(x+1\right)\left(x-2\right)=3\left(x^2+2x+4\right)\)
=>\(2x^2+x^2-x-2=3x^2+6x+12\)
=>6x+12=-x-2
=>7x=-14
=>x=-2(nhận)
c: ĐKXĐ: x∉{1;4}
Ta có: \(\frac{2x+1}{x^2-5x+4}+\frac{5}{x-1}=\frac{2}{x-4}\)
=>\(\frac{2x+1}{\left(x-1\right)\left(x-4\right)}+\frac{5}{x-1}=\frac{2}{x-4}\)
=>\(\frac{2x+1}{\left(x-1\right)\left(x-4\right)}+\frac{5\left(x-4\right)}{\left(x-1\right)\left(x-4\right)}=\frac{2\left(x-1\right)}{\left(x-1\right)\left(x-4\right)}\)
=>2x+1+5(x-4)=2(x-1)
=>2x+1+5x-20=2x-2
=>7x-19=2x-2
=>5x=17
=>\(x=\frac{17}{5}\) (nhận)

Bài 1:
a: \(\left(x-4\right)^3=\left(x+4\right)\left(x^2-x-16\right)\)
=>\(x^3-12x^2+48x-64=x^3-x^2-16x+4x^2-4x-64\)
=>\(x^3-12x^2+48x-64=x^3+3x^2-20x-64\)
=>\(-15x^2+68x=0\)
=>x(-15x+68)=0
=>\(\left[\begin{array}{l}x=0\\ -15x+68=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=\frac{68}{15}\end{array}\right.\)
b: ĐKXĐ: x∉{0;-2}
Ta có: \(\frac{x+2}{x}=\frac{x^2+5x+4}{x^2+2x}+\frac{x}{x+2}\)
=>\(\frac{x+2}{x}=\frac{x^2+5x+4}{x\left(x+2\right)}+\frac{x}{x+2}\)
=>\(\frac{\left(x+2\right)^2}{x\left(x+2\right)}=\frac{x^2+5x+4}{x\left(x+2\right)}+\frac{x^2}{x\left(x+2\right)}\)
=>\(x^2+5x+4+x^2=\left(x+2\right)^2=x^2+4x+4\)
=>\(2x^2+5x+4-x^2-4x-4=0\)
=>\(x^2+x=0\)
=>x(x+1)=0
=>\(\left[\begin{array}{l}x=0\\ x+1=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\left(loại\right)\\ x=-1\left(nhận\right)\end{array}\right.\)
c: ĐKXĐ: x∉{2;-2}
Ta có: \(\frac{x+1}{x-2}-\frac{5}{x+2}=\frac{12}{x^2-4}+1\)
=>\(\frac{\left(x+1\right)}{x-2}-\frac{5}{x+2}=\frac{12}{\left(x-2\right)\left(x+2\right)}-1\)
=>\(\frac{\left(x+1\right)\left(x+2\right)-5\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{12-\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
=>\(\left(x+1\right)\left(x+2\right)-5\left(x-2\right)=12-\left(x-2\right)\left(x+2\right)\)
=>\(x^2+3x+2-5x+10=12-\left(x^2-4\right)\)
=>\(x^2-2x+12=12-x^2+4\)
=>\(x^2-2x+12=-x^2+16\)
=>\(2x^2-2x-4=0\)
=>\(x^2-x-2=0\)
=>(x-2)(x+1)=0
=>\(\left[\begin{array}{l}x-2=0\\ x+1=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=2\left(loại\right)\\ x=-1\left(nhận\right)\end{array}\right.\)
Bài 2:
Gọi số học sinh giỏi là x(bạn)
(Điều kiện: x∈N*)
Số học sinh khá là \(\frac52x\) (bạn)
Số học sinh giỏi sau khi thêm 10 bạn là x+10(bạn)
Số học sinh khá sau khi bớt đi 6 bạn là \(\frac52x-6\) (bạn)
Số học sinh khá sẽ gấp 2 lần số học sinh giỏi nên ta có:
\(\frac52x-6=2\left(x+10\right)\)
=>2,5x-6=2x+20
=>0,5x=26
=>x=52(nhận)
vậy: Số học sinh giỏi là 52 bạn


a. Câu này đơn giản em tự giải
b.
Xét hai tam giác OIM và OHN có:
\(\left\{{}\begin{matrix}\widehat{OIM}=\widehat{OHN}=90^0\\\widehat{MON}\text{ chung}\\\end{matrix}\right.\) \(\Rightarrow\Delta OIM\sim\Delta OHN\left(g.g\right)\)
\(\Rightarrow\dfrac{OI}{OH}=\dfrac{OM}{ON}\Rightarrow OI.ON=OH.OM\)
Cũng từ 2 tam giác đồng dạng ta suy ra \(\widehat{OMI}=\widehat{ONH}\)
Tứ giác OAMI nội tiếp (I và A cùng nhìn OM dưới 1 góc vuông)
\(\Rightarrow\widehat{OAI}=\widehat{OMI}\)
\(\Rightarrow\widehat{OAI}=\widehat{ONH}\) hay \(\widehat{OAI}=\widehat{ONA}\)
c.
Xét hai tam giác OAI và ONA có:
\(\left\{{}\begin{matrix}\widehat{OAI}=\widehat{ONA}\left(cmt\right)\\\widehat{AON}\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta OAI\sim\Delta ONA\left(g.g\right)\)
\(\Rightarrow\dfrac{OA}{ON}=\dfrac{OI}{OA}\Rightarrow OI.ON=OA^2=OC^2\) (do \(OA=OC=R\))
\(\Rightarrow\dfrac{OC}{ON}=\dfrac{OI}{OC}\)
Xét hai tam giác OCN và OIC có:
\(\left\{{}\begin{matrix}\dfrac{OC}{ON}=\dfrac{OI}{OC}\\\widehat{CON}\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta OCN\sim\Delta OIC\left(g.g\right)\)
\(\Rightarrow\widehat{OCN}=\widehat{OIC}=90^0\) hay tam giác ACN vuông tại C
\(\widehat{ABC}\) là góc nt chắn nửa đường tròn \(\Rightarrow BC\perp AB\)
Áp dụng hệ thức lượng trong tam giác vuông ACN với đường cao BC:
\(BC^2=BN.BA=BN.2BH=2BN.BH\) (1)
O là trung điểm AC, H là trung điểm AB \(\Rightarrow OH\) là đường trung bình tam giác ABC
\(\Rightarrow OH=\dfrac{1}{2}BC\)
Xét hai tam giác OHN và EBC có:
\(\left\{{}\begin{matrix}\widehat{OHN}=\widehat{EBC}=90^0\\\widehat{ONH}=\widehat{ECB}\left(\text{cùng phụ }\widehat{IEB}\right)\end{matrix}\right.\) \(\Rightarrow\Delta OHN\sim\Delta EBC\left(g.g\right)\)
\(\Rightarrow\dfrac{OH}{EB}=\dfrac{HN}{BC}\Rightarrow HN.EB=OH.BC=\dfrac{1}{2}BC^2\)
\(\Rightarrow BC^2=2HN.EB\) (2)
(1);(2) \(\Rightarrow BN.BH=HN.BE\)
\(\Rightarrow BN.BH=\left(BN+BH\right).BE\)
\(\Rightarrow\dfrac{1}{BE}=\dfrac{BN+BH}{BN.BH}=\dfrac{1}{BH}+\dfrac{1}{BN}\) (đpcm)

a: Xét tứ giác SAOB có \(\hat{SAO}+\hat{SBO}=90^0+90^0=180^0\)
nên SAOB là tứ giác nội tiếp đường tròn đường kính SO
b: ΔOMN cân tại O
mà OI là đường trung tuyến
nên OI⊥MN tại I
Ta có: \(\hat{OIS}=\hat{OAS}=\hat{OBS}=90^0\)
=>O,I,A,S,B cùng thuộc đường tròn đường kính OS
c: Xét (O) có
SA,SB là các tiếp tuyến
Do đó: SA=SB
=>S nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1),(2) suy ra SO là đường trung trực của AB
=>SO⊥AB tại H và H là trung điểm của AB
Xét ΔSAO vuông tại A có AH là đường cao
nên \(SH\cdot SO=SA^2\)
d: Xét (O) có
\(\hat{SAM}\) là góc tạo bởi tiếp tuyến AS và dây cung AM
\(\hat{ANM}\) là góc nội tiếp chắn cung AM
Do đó: \(\hat{SAM}=\hat{ANM}\)
Xét ΔSAM và ΔSNA có
\(\hat{SAM}=\hat{SNA}\)
góc ASM chung
Do đó: ΔSAM~ΔSNA
=>\(\frac{SA}{SM}=\frac{SN}{SA}\)
=>\(SA^2=SM\cdot SN\)

Đáp án b
Các hình màu xanh là phản chiếu của các hình máu cam trong gương.
Nhìn sơ sơ đoán là chọn B
Kiểu 2 hình ở gần (đáy hình cam trên và đỉnh hình xanh dưới sẽ giống nhau), 2 hình còn lại giống nhau tại vị trí đỉnh trên hình cam và đáy dưới hình xanh
a) \(\dfrac{1}{\sqrt[]{x}-1}+\dfrac{1}{1+\sqrt[]{x}}+1\left(x\ge0;x\ne1\right)\)
\(=\dfrac{\sqrt[]{x}+1+\sqrt[]{x}-1+x-1}{\left(\sqrt[]{x}-1\right)\left(\sqrt[]{x}+1\right)}\)
\(=\dfrac{x+2\sqrt[]{x}-1}{x-1}\)
\(=\dfrac{x-1+2\sqrt[]{x}}{x-1}\)
\(=1+\dfrac{2\sqrt[]{x}}{x-1}\)
b) \(\dfrac{1}{\sqrt[]{x}+2}-\dfrac{2}{\sqrt[]{x}-2}-\dfrac{4}{4-x}\left(x\ge0;x\ne4\right)\)
\(=\dfrac{\sqrt[]{x}-2-2\left(\sqrt[]{x}+2\right)+4}{\left(\sqrt[]{x}+2\right)\left(\sqrt[]{x}-2\right)}\)
\(=\dfrac{\sqrt[]{x}-2-2\sqrt[]{x}-4+4}{\left(\sqrt[]{x}+2\right)\left(\sqrt[]{x}-2\right)}\)
\(=\dfrac{-\sqrt[]{x}-2}{\left(\sqrt[]{x}+2\right)\left(\sqrt[]{x}-2\right)}\)
\(=\dfrac{-\left(\sqrt[]{x}+2\right)}{\left(\sqrt[]{x}+2\right)\left(\sqrt[]{x}-2\right)}\)
\(=\dfrac{-1}{\sqrt[]{x}-2}\)