K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5:

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

góc A chung

=>ΔABD đồng dạng với ΔACE

b; ΔABD đồng dạng với ΔACE

=>AD/AE=AB/AC

=>AD/AB=AE/AC

Xét ΔADE và ΔABC có

AD/AB=AE/AC

góc DAE chung

=>ΔADE đồng dạng với ΔABC

c: ΔADE đồng dạng với ΔABC

=>S ADE/S ABC=(AD/AB)^2=1/4

 

NV
10 tháng 3 2023

Đặt \(a=\dfrac{1}{x};b=\dfrac{1}{y};c=\dfrac{1}{z}\Rightarrow xyz=1\) và \(x;y;z>0\)

Gọi biểu thức cần tìm GTNN là P, ta có:

\(P=\dfrac{1}{\dfrac{1}{x^3}\left(\dfrac{1}{y}+\dfrac{1}{z}\right)}+\dfrac{1}{\dfrac{1}{y^3}\left(\dfrac{1}{z}+\dfrac{1}{x}\right)}+\dfrac{1}{\dfrac{1}{z^3}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)}\)

\(=\dfrac{x^3yz}{y+z}+\dfrac{y^3zx}{z+x}+\dfrac{z^3xy}{x+y}=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)

\(P\ge\dfrac{\left(x+y+z\right)^2}{y+z+z+x+x+y}=\dfrac{x+y+z}{2}\ge\dfrac{3\sqrt[3]{xyz}}{2}=\dfrac{3}{2}\)

\(P_{min}=\dfrac{3}{2}\) khi \(x=y=z=1\) hay \(a=b=c=1\)

22 tháng 3

Đặt \(a = \frac{1}{x} ; b = \frac{1}{y} ; c = \frac{1}{z} \Rightarrow x y z = 1\) và \(x ; y ; z > 0\)

Gọi biểu thức cần tìm GTNN là P, ta có:

\(P = \frac{1}{\frac{1}{x^{3}} \left(\right. \frac{1}{y} + \frac{1}{z} \left.\right)} + \frac{1}{\frac{1}{y^{3}} \left(\right. \frac{1}{z} + \frac{1}{x} \left.\right)} + \frac{1}{\frac{1}{z^{3}} \left(\right. \frac{1}{x} + \frac{1}{y} \left.\right)}\)

\(= \frac{x^{3} y z}{y + z} + \frac{y^{3} z x}{z + x} + \frac{z^{3} x y}{x + y} = \frac{x^{2}}{y + z} + \frac{y^{2}}{z + x} + \frac{z^{2}}{x + y}\)

\(P \geq \frac{\left(\left(\right. x + y + z \left.\right)\right)^{2}}{y + z + z + x + x + y} = \frac{x + y + z}{2} \geq \frac{3 \sqrt[3]{x y z}}{2} = \frac{3}{2}\)

\(P_{m i n} = \frac{3}{2}\) khi \(x = y = z = 1\) hay \(a = b = c = 1\)

26 tháng 7

26 tháng 7

1: \(\frac{1-a\cdot\sqrt{a}}{1-\sqrt{a}}=\frac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)^{}}{1-\sqrt{a}}=1+\sqrt{a}+a\)

2: \(\frac{\sqrt{x+3}+\sqrt{x-3}}{\sqrt{x+3}-\sqrt{x-3}}=\frac{\left(\sqrt{x+3}+\sqrt{x-3}\right)\left(\sqrt{x+3}+\sqrt{x-3}\right)}{\left(\sqrt{x+3}-\sqrt{x-3}\right)\left(\sqrt{x+3}+\sqrt{x-3}\right)}\)

\(=\frac{\left(\sqrt{x+3}+\sqrt{x-3}\right)^2}{x+3-\left(x-3\right)}=\frac{x+3+x-3+2\sqrt{\left(x+3\right)\left(x-3\right)}}{6}\)

\(=\frac{2x+2\sqrt{x^2-9}}{6}=\frac{x+\sqrt{x^2-9}}{3}\)

4: \(\frac{3}{2\sqrt{9x}}=\frac{3}{2\cdot3\sqrt{x}}=\frac{1}{2\sqrt{x}}=\frac{\sqrt{x}}{2}\)

5: \(\frac{1}{2\sqrt{x}}=\frac{1\cdot\sqrt{x}}{2\sqrt{x}\cdot\sqrt{x}}=\frac{\sqrt{x}}{2x}\)

7: \(\frac{\sqrt{a^3}+a}{\sqrt{a}-1}=\frac{a\cdot\sqrt{a}+a}{\sqrt{a}-1}=\frac{a\left(\sqrt{a}+1\right)}{\sqrt{a}-1}=\frac{a\left(\sqrt{a}+1\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)

\(=\frac{a\left(a+2\sqrt{a}+1\right)}{a-1}=\frac{a^2+2a\cdot\sqrt{a}+a}{a-1}\)

8: \(\frac{2}{\sqrt{a}+\sqrt{2b}}=\frac{2\cdot\left(\sqrt{a}-\sqrt{2b}\right)}{\left(\sqrt{a}+\sqrt{2b}\right)\left(\sqrt{a}-\sqrt{2b}\right)}=\frac{2\sqrt{a}-2\sqrt{2b}}{a-2b}\)

10: \(\frac{25}{\sqrt{a}-\sqrt{b}}=\frac{25\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{25\sqrt{a}+25\sqrt{b}}{a-b}\)

11: \(-\frac{ab}{\sqrt{a}-\sqrt{b}}=-\frac{ab\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{-ab\cdot\sqrt{a}-ab\cdot\sqrt{b}}{a-b}\)

HQ
Hà Quang Minh
Giáo viên
10 tháng 9 2023

\({x^2} = {4^2} + {2^2} = 20 \Rightarrow x = 2\sqrt 5 \)

\({y^2} = {5^2} - {4^2} = 9 \Leftrightarrow y = 3\)

\({z^2} = {\left( {\sqrt 5 } \right)^2} + {\left( {2\sqrt 5 } \right)^2} = 25 \Rightarrow z = 5\)

\({t^2} = {1^2} + {2^2} = 5 \Rightarrow t = \sqrt 5 \)

a: Xét ΔKAD và ΔBDA có

\(\hat{KAD}=\hat{BDA}\) (hai góc so le trong, AK//BD)

AD chung

\(\hat{KDA}=\hat{BAD}\) (hai góc so le trong, AB//CD)

Do đó: ΔKAD=ΔBDA

=>KA=BD

mà BD=AC

nên AK=AC

=>ΔAKC cân tại A

b: ΔAKC cân tại A

=>\(\hat{AKC}=\hat{ACK}\)

\(\hat{AKC}=\hat{BDC}\) (hai góc đồng vị, BD//AK)

nên \(\hat{BDC}=\hat{ACD}\)

Xét ΔBDC va ΔACD có

BD=AC

\(\hat{BDC}=\hat{ACD}\)

CD chung

Do đó: ΔBDC=ΔACD

=>\(\hat{BCD}=\hat{ADC}\)

=>ABCD là hình thang cân

a: Xét ΔABC có F,E lần lượt là trung điểm của AB,AC

=>FE là đường trung bình của ΔABC

=>FE//BC và \(FE=\frac12BC\)

=>BFEC là hình thang

Hình thang BFEC có \(\hat{FBC}=\hat{ECB}\) (ΔABC cân tại A)

nên BFEC là hình thang cân

b: Xét ΔABC có

F,D lần lượt là trung điểm của BA,BC

=>FD là đường trung bình của ΔABC

=>FD//AC và \(FD=\frac{AC}{2}\)

Xét ΔMAC có

I,K lần lượt là trung điểm của MA,MC

=>IK là đường trung bình củaΔMAC

=>IK//AC và \(IK=\frac{AC}{2}\)

Ta có: FD//AC

IK//AC

Do đó: FD//IK

Ta có: \(FD=\frac{AC}{2}\)

\(IK=\frac{AC}{2}\)

Do đó: FD=IK

Xét tứ giác FDKI có

FD//IK

FD=IK

Do đó: FDKI là hình bình hành

c: HK=HM+KM

\(=\frac12\cdot\left(MB+MC\right)=\frac12\cdot BC\)

=FE

Xét tứ giác FEKH có

FE//KH

FE=KH

Do đó: FEKH là hình bình hành

=>FK cắt EH tại trung điểm của mỗi đường(1)

FDKI là hình bình hành

=>FK cắt DI tại trung điểm của mỗi đường(2)

Từ (1),(2) suy ra FK,EH,DI đồng quy

d: ΔABC đều

mà AD là đường trung tuyến

nên AD là phân giác của góc BAC và AD⊥BC

=>\(\hat{BAD}=\frac12\cdot\hat{BAC}=\frac12\cdot60^0=30^0\)

Xét tứ giác APMD có \(\hat{APM}+\hat{ADM}=90^0+90^0=180^0\)

nên APMD là tứ giác nội tiếp đường tròn đường kính AM

=>APMD nội tiếp (I)

Xét (I) có \(\hat{PAD}\) là góc nội tiếp chắn cung PD

=>\(\hat{PID}=2\cdot\hat{PAD}=60^0\)

Xét ΔIPD có IP=ID và \(\hat{PID}=60^0\)

nên ΔIPD đều

Từ đề bài, ta có hình vẽ sau:

\(\hat{BAC}=\hat{BAH}+\hat{CAH}=10^0+10^0=20^0\)

Xét ΔABC có

AH là đường cao

AH là đường phân giác

Do đó: ΔABC cân tại A

=>\(\hat{ABC}=\frac{180^0-\hat{BAC}}{2}=\frac{180^0-20^0}{2}=80^0\)

Ta có: \(\hat{KBC}+\hat{KBA}=\hat{ABC}\) (tia BK nằm giữa hai tia BA và BC)

=>\(\hat{KBA}=80^0-40^0=40^0\)

Xét ΔABG và ΔACG có

AB=AC

\(\hat{BAG}=\hat{CAG}\)

AG chung

Do đó: ΔABG=ΔACG

=>\(\hat{ABG}=\hat{ACG}\)

=>\(x=40^0\)

HQ
Hà Quang Minh
Giáo viên
11 tháng 1 2024

Xét tứ giác ABCD có:

\(\begin{array}{l} \widehat A  + \widehat  B + \widehat C  + \widehat  D  = {360^0}\\{85^0} + x + {65^0} + {75^0} = {360^0}\\x = {360^0} - {85^0} - {65^0} - {75^0} = {135^0}\end{array}\)