Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn chỉ việc nhân ra ròi cho nó bằng hệ số của từng cái là đc thôi

1) x - y - a(x - y) = (x - y) - a(x - y) = (1 - x)(x - y)
2) a - b + x(a - b) = (a - b) + x(a - b) = (1 + x)(a - b)
3) a(x - y) - x + y = a(x - y) - (x - y) = (a - 1)(x - y)
4) x(a - b) - a + b = x(a - b) - (a - b) = (x - 1)(a - b)
5) ax + ay + bx + by = a(x + y) + b(x + y) = (a + b)(x + y)
6) ax + ay - bx - by = a(x + y) - b(x + y) = (a - b)(x + y)
7) - 2x - 2y + ax + ay = -2(x + y) + a(x + y) = (a - 2)(x + y)
8) x2 - xy - 2x + 2y = x(x - y) - 2(x - y) = (x - 2)(x - y)
Sorry nha, giờ mình chỉ rảnh làm 8 câu thôi

\(\left(x^2+cx+2\right)\left(ax+b\right)=x^3-x^2+2\) với mọi x
\(=>x^2\left(ax+b\right)+cx\left(ax+b\right)+2\left(ax+b\right)=x^3-x^2+2\) với mọi x
\(=>ax^3+bx^2+acx^2+bcx+2ax+2b=x^3-x^2+2\) với mọi x
\(=>ax^3+\left(ac+b\right)x^2+\left(2a+bc\right)x+2b=x^3-x^2+2\) với mọi x
\(=>\) ax3=x3 =>a=1
(ac+b)x2=-x2=>ac+b=-1=>c+b=-1 (vì a=1) (1)
(2a+bc)x=0=>2a+bc=0=>2+bc=0 (vì a=1)=>bc=-2
2b=2=>b=1
Thay vào (1) => c=-1-1=-2
Vậy a=1;b=1;c=-2
câu sau tương tự

a) Biểu thức không phân tích được thành nhân tử. Bạn xem có nhầm dấu không.
b)
\(8x^2+4xy-2ax-ay=(8x^2+4xy)-(2ax+ay)\)
\(=4x(2x+y)-a(2x+y)=(4x-a)(2x+y)\)
c) Biểu thức không phân tích được thành nhân tử.
d)
\(3a^2-6ab+3b^2-12c^2\)
\(=(3a^2-6ab+3b^2)-12c^2=3(a^2-2ab+b^2)-12c^2\)
\(=3(a-b)^2-3.(2c)^2=3[(a-b)^2-(2c)^2]=3(a-b-2c)(a-b+2c)\)
e) Biểu thức không phân tích được thành nhân tử.
f) Sửa:
\(x^2+y^2+2xy-m^2+2mn-n^2\)
\(=(x^2+2xy+y^2)-(m^2-2mn+n^2)\)
\(=(x+y)^2-(m-n)^2=(x+y-m+n)(x+y+m-n)\)
g) Biểu thức không phân tích được thành nhân tử. Nếu muốn phải thay $x^2$ thành $4x^2$ hoặc $y^2$ thành $4y^2$
h)
\(x^2-xy-3x+3y=(x^2-xy)-(3x-3y)=x(x-y)-3(x-y)=(x-3)(x-y)\)
k)
\(x^4-4x^3+8x^2+8x=x(x^3-4x^2+8x+8)\)
l)
\(16x^3y+\frac{1}{4}yz^3=\frac{1}{4}y(64x^3+z^3)=\frac{1}{4}y[(4x)^3+z^3]\)
\(=\frac{1}{4}y(4x+z)(16x^2-4xz+z^2)\)

a) \(x^2+2x^2+x=x\left(x+2x+1\right)=x\left(x+1\right)^2\)
b) \(xy+y^2-x-y=\left(xy-x\right)+y^2-y=x\left(y-1\right)+y\left(y-1\right)=\left(y-1\right)\left(x+y\right)\)mấy câu sau bạn làm tương tự nhé, đặt biến x với x và y với y là được. có gì ib face cho mình
có gì sai xót mong m.n bỏ qua và nhắc nhở ạ

1 ) Ta có :
\(x^3-x^2+2=x^3-x+x-x^2+2=x\left(x^2-1\right)+\left[\left(-x^2+1\right)+\left(x+1\right)\right]\)
\(=x\left(x-1\right)\left(x+1\right)+\left[-\left(x-1\right)\left(x+1\right)+\left(x+1\right)\right]\)
\(=x\left(x-1\right)\left(x+1\right)+\left(x+1\right)\left(2-x\right)\)
\(=\left(x+1\right)\left[x\left(x-1\right)+2-x\right]=\left(x+1\right)\left(x^2-2x+2\right)\)
\(\Rightarrow\left(x^2+cx+2\right)\left(ax+b\right)=\left(x^2-2x+2\right)\left(x+1\right)\)
Đồng nhất ta được : \(\hept{\begin{cases}a=1\\b=1\\c=-2\end{cases}}\)
2 ) làm tương tự
a) \(x^4+x^3-8x-8\)
\(=x^3\left(x+1\right)-8\left(x+1\right)\)
\(=\left(x^3+8\right)\left(x+1\right)\)
\(=\left(x+2\right)\left(x^2-2x+4\right)\left(x+1\right)\)
a) \(=x^3\left(x+1\right)-8\left(x+1\right)=\left(x+1\right)\left(x^3-8\right)=\left(x+1\right)\left(x-2\right)\left(x^2+2x+4\right)\)
b) \(=y\left(x+2\right)-3\left(x+2\right)=\left(x+2\right)\left(y-3\right)\)
c) \(=3\left(x-y\right)-a\left(x-y\right)=\left(x-y\right)\left(3-a\right)\)