K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

EM,EA là tiếp tuyến

nên EM=EA và OE là phân giác của góc MOA(1)

Xét (O) có

FM,FB là tiếp tuyến

nên FM=FB và OF là phân giác của góc MOB(2)

Từ (1), (2) suy ra góc FOE=1/2*180=90 độ

b: EF=EM+MF

=>EF=EA+FB

c: Xét ΔOEF vuông tại O có OM là đường cao

=>ME*MF=OM^2

=>ME*MF=OA^2

NV
22 tháng 1 2024

Gọi số xe dự định tham gia chở hàng là x (xe) với x>4, x nguyên dương

Mỗi xe dự định chở khối lượng hàng là: \(\dfrac{20}{x}\) (tấn)

Số xe thực tế tham gia chở hàng là: \(x-4\) (xe)

Thực tế mỗi xe phải chở số hàng là: \(\dfrac{20}{x-4}\) (tấn)

Do thực tế mỗi xe phải chở nhiều hơn dự định là 5/6 tấn hàng nên ta có pt:

\(\dfrac{20}{x-4}-\dfrac{20}{x}=\dfrac{5}{6}\)

\(\Rightarrow24x-24\left(x-4\right)=x\left(x-4\right)\)

\(\Leftrightarrow x^2-4x-96=0\)

\(\Rightarrow\left[{}\begin{matrix}x=12\\x=-8\left(loại\right)\end{matrix}\right.\)

Vậy thực tế có \(12-4=8\) xe tham gia vận chuyển

NV
6 tháng 3 2023

1.

a. Em tự giải

b.

\(\left\{{}\begin{matrix}2x+y=4m-1\\3x-2y=-m+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4x+2y=8m-2\\3x-2y=-m+9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7x=7m+7\\y=\dfrac{3x+m-9}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+1\\y=2m-3\end{matrix}\right.\)

Để \(x+y=7\Rightarrow m+1+2m-3=7\)

\(\Rightarrow3m=9\Rightarrow m=3\)

NV
6 tháng 3 2023

2.

a. Em tự giải

b.

Phương trình có 2 nghiệm khi:

\(\Delta'=\left(m+1\right)^2-\left(2m+10\right)=m^2-9\ge0\)

\(\Rightarrow\left[{}\begin{matrix}m\ge3\\m\le-3\end{matrix}\right.\)

Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m+10\end{matrix}\right.\)

Ta có:

\(P=x_1^2+x_2^2+8x_1x_2=\left(x_1+x_2\right)^2+6x_1x_2\)

\(=4\left(m+1\right)^2+6\left(2m+10\right)=4m^2+20m+64\)

\(=4\left(m^2+5m+6\right)+40=4\left(m+2\right)\left(m+3\right)+40\)

Do \(\left[{}\begin{matrix}m\ge3\\m\le-3\end{matrix}\right.\) \(\Rightarrow\left(m+2\right)\left(m+3\right)\ge0\)

\(\Rightarrow P\ge40\)

Vậy \(P_{min}=40\) khi \(m=-3\)

(Nếu bài này giải là \(4m^2+20m+64=\left(2m+5\right)^2+39\ge39\) là sai vì dấu = khi đó xảy ra tại \(m=-\dfrac{5}{2}\) ko thỏa mãn điều kiện \(\Delta\) để pt có nghiệm)

P
Phong
CTVHS
10 tháng 1 2024

\(x^2+3x+2+2\left(2-x\right)\sqrt{x-1}=0\left(x\ge1\right)\)

\(\Leftrightarrow x^2-x-2x+2-2\left(x-2\right)\sqrt{x-1}=0\)

\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)-2\left(x-2\right)\sqrt{x-1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)-2\left(x-2\right)\sqrt{x-1}=0\)

\(\Leftrightarrow\left(x-2\right)\sqrt{x-1}\left(\sqrt{x-1}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\\sqrt{x-1}=0\\\sqrt{x-1}-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x-1=0\\\sqrt{x-1}=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=1\left(tm\right)\\x-1=4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\\x=5\end{matrix}\right.\left(tm\right)\)

Vậy: \(x\in\left\{1;2;5\right\}\)

12 tháng 1 2024

M A O B E F H K P Q

a/

Ta có

AE = HE; BF = HF (2 tiếp tuyến cùng xp từ 1 điểm ngoài hình tròn thì khoảng cách từ điểm đó đến 2 tiếp điểm bằng nhau)

=> AE + BF = HE + HF = EF (dpcm)

b/ Gọi P; K; Q lần lượt là giao của OE; OM; OF với (O)

Ta có

sđ cung PA = sđ cung PH (Hai tiếp tuyến cùng xp từ 1 điểm ngoài hình tròn thì đường nối điểm đó với tâm chia đôi cung chắn bởi 2 tiếp điểm)

sđ cung QB = sđ cung QH (lý do như trên)

=> sđ cung PH + sđ cung QH = sđ cung PA + sđ cung QB

=> sđ cung APH = sđ cung BQH

Mà sđ cung APH + sđ cung BQH = sđ cung AKB

=> sđ cung APH = sđ cung BQH = \(\dfrac{sđcungAKB}{2}\) (1)

Ta có

sđ cung KA = sđ cung KB (Hai tiếp tuyến cùng xp từ 1 điểm ngoài hình tròn thì đường nối điểm đó với tâm chia đôi cung chắn bởi 2 tiếp điểm)

Mà sđ cung KA + sđ cung KB = sđ cung AKB

=> sđ cung KA = sđ cung KB = \(\dfrac{sđcungAKB}{2}\) (2)

Ta có

\(sđ\widehat{MOA}=sđcungKA=\dfrac{sđcungAKB}{2}\) (góc ở tâm đường tròn) (3)

\(sđ\widehat{FOE}=sđcungPHQ=sđcungPH+sđcungQH=\dfrac{sđcungAKB}{2}\) (góc ở tâm đường tròn) (4)

Từ (1) (2) (3) (4) \(\Rightarrow\widehat{MOA}=\widehat{FOE}\)

 

 

NV
19 tháng 1 2024

ĐKXĐ: \(x+2y\ne0\)

\(\left\{{}\begin{matrix}x-\dfrac{1}{x+2y}=\dfrac{7}{4}\\-\dfrac{5}{2}x+2+\dfrac{4}{x+2y}=-2\end{matrix}\right.\)

Đặt \(\dfrac{1}{x+2y}=z\) ta được hệ:

\(\left\{{}\begin{matrix}x-z=\dfrac{7}{4}\\-\dfrac{5}{2}x+4z=-4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\z=\dfrac{1}{4}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=2\\\dfrac{1}{x+2y}=\dfrac{1}{4}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\x+2y=4\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

8 tháng 8 2023

Chắc câu c quá, tại tổng 2 ô vuông của hình chữ nhật có 10 chấm tròn. =)

8 tháng 8 2023

Em nghĩ là câu c vì thấy tổng của các chấm tròn ở mỗi miếng đều là 10.

29 tháng 8 2021

a, \(P=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{x-1}\)ĐK : \(x\ge0;x\ne1\)

\(=\frac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{x-1}=\frac{x-2\sqrt{x}+1}{x-1}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

b, \(B=\frac{3x-4}{x-2\sqrt{x}}-\frac{\sqrt{x}+2}{\sqrt{x}}+\frac{\sqrt{x}-1}{2-\sqrt{x}}\)ĐK : \(x>0;x\ne4\)

\(=\frac{3x-4-\left(x-4\right)-\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\frac{3x-4-x+4-x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}=\frac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-2}\)

29 tháng 8 2021

c, \(Q=\frac{3}{\sqrt{a}-3}+\frac{2}{\sqrt{a}+3}+\frac{a-5\sqrt{a}-3}{a-9}\)ĐK : \(a\ge0;a\ne9\)

\(=\frac{3\sqrt{a}+9+2\sqrt{a}-6+a-5\sqrt{a}-3}{a-9}=\frac{a}{a-9}\)

d, \(B=\frac{x}{x-4}-\frac{1}{2-\sqrt{x}}+\frac{1}{\sqrt{x}+2}\)ĐK : \(x\ge0;x\ne4\)

\(=\frac{x}{x-4}+\frac{\sqrt{x}+2}{x-4}+\frac{\sqrt{x}-2}{x-4}=\frac{x+2\sqrt{x}}{x-4}=\frac{\sqrt{x}}{\sqrt{x}-2}\)

18 tháng 8

a, Ta có tam giác \(A B C\) nhọn, kẻ:

  • \(B D \bot A B\)
  • \(C D \bot A C\)

=> Các góc tại \(B\)\(C\) đều là góc vuông.

Ta xét tứ giác \(A B D C\):

  • \(\angle A B D = 90^{\circ}\) (do \(B D \bot A B\))
  • \(\angle A C D = 90^{\circ}\) (do \(C D \bot A C\))

Suy ra:

\(\angle A B D + \angle A C D = 180^{\circ}\)

Mà tổng góc trong tứ giác bằng \(360^{\circ}\), nên:

\(\angle B A D + \angle B C D + 180^{\circ} = 360^{\circ} \Rightarrow \angle B A D + \angle B C D = 180^{\circ}\)

\(\angle B A D\) chính là góc tại \(A\) của tam giác \(A B C\), ký hiệu là \(\angle A\),
\(\angle B C D\) chính là góc tại \(D\) trong tứ giác (ký hiệu là \(\angle D\)).

\(\Rightarrow \angle D + \angle A = 180^{\circ}\)

b, * Chứng minh \(Q J = B D\)

\(I\) là trung điểm của \(P Q\)\(B J\), nên:

  • \(I P = I Q\) (trung điểm \(P Q\))
  • \(I B = I J\) (trung điểm \(B J\))

Xét hai tam giác \(I P B\)\(I Q J\):

  • \(I P = I Q\) (gt)
  • \(I B = I J\) (gt)
  • \(\angle P I B = \angle Q I J\) (đối đỉnh)

⇒ Tam giác \(I P B\) ≅ tam giác \(Q I J\) (cạnh – cạnh – góc xen giữa)

Suy ra:

\(P B = Q J\)

Nhưng \(P B = A B - A P = A B - \left(\right. A B - B P \left.\right) = B P\), mà \(B P = B D\) (gt)

\(Q J = P B = B P = B D \Rightarrow \boxed{Q J = B D}\)

*Chứng minh \(\angle A Q J + \angle D = 180^{\circ}\)

Ta đã biết ở phần a): \(\angle A + \angle D = 180^{\circ} .\)

Ta sẽ chứng minh \(\angle A Q J = \angle A\)

Xét hai tam giác:

  • Tam giác \(A B P\): có \(B P = B D\) (gt)
  • Tam giác \(A C Q\): có \(C Q = C D\) (gt)

Do \(B D \bot A B\), \(C D \bot A C\)\(B D\) là đường cao tam giác \(A B C\), tương tự \(C D\) cũng là đường cao.

Suy ra tam giác \(A B P\) vuông tại \(B\), tam giác \(A C Q\) vuông tại \(C\). Hai điểm \(P , Q\) được lấy đối xứng vai trò như nhau theo hai cạnh của tam giác \(A B C\).

Lại có \(Q J = B D = B P\) (ở trên vừa chứng minh), do đó tam giác \(A Q J\) đồng dạng với tam giác \(A B C\)

\(\angle A Q J = \angle A .\)

Vậy:

\(\angle A Q J + \angle D = \angle A + \angle D = 180^{\circ} . \textrm{ }\textrm{ } \textrm{ } (đ\text{pcm})\)