
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a. Dựa vào đồ thị ta có:
Chu kì \(T = 2 s\), suy ra tần số góc \(\omega = \frac{2 \pi}{T} = \frac{2 \pi}{2} = \pi\) rad/s
Vận tốc cực đại của dao động: \(\text{v}_{m a x} = \omega A\)
\(\Rightarrow A = \frac{\text{v}_{m a x}}{\omega} = \frac{4}{\pi}\) cm
Thời điểm \(t = 0\), vật có \(\text{v} = \text{v}_{m a x}\), suy ra vật ở VTCB và \(\text{v} > 0\)
Khi đó: \(x = 0 \Rightarrow cos \varphi = 0 \Rightarrow \varphi = - \frac{\pi}{2}\)
Phương trình của vận tốc có dạng: \(\text{v} = \omega A cos \left(\right. \omega t + \varphi + \frac{\pi}{2} \left.\right)\)
\(\Rightarrow \text{v} = 4 cos \left(\right. \pi t - \frac{\pi}{2} + \frac{\pi}{2} \left.\right) = 4 cos \left(\right. \pi t \left.\right)\) (cm/s)
b. Phương trình dao động điều hòa có dạng: \(x = A cos \left(\right. \omega t + \varphi \left.\right)\)
\(\Rightarrow x = \frac{4}{\pi} cos \left(\right. \pi t - \frac{\pi}{2} \left.\right)\) (cm)
Phương trình của gia tốc có dạng: \(a = \omega^{2} A cos \left(\right. \omega t + \varphi + \pi \left.\right)\)
\(\Rightarrow a = \pi^{2} . \frac{4}{\pi} cos \left(\right. \pi t - \frac{\pi}{2} + \pi \left.\right) = 4 \pi cos \left(\right. \pi t + \frac{\pi}{2} \left.\right)\) (cm/s2)



khi đ1 và đ2 sáng bt thì
I = I đm = I1đm + I2đm ( 2 cái I này bạn tính ở từng đèn )
⇔ \(\dfrac{U}{R_{tđ}}\)= I đm = I1đm + I2đm
⇔\(\dfrac{U}{R_1+\dfrac{R_{đ2}.R_{đ1}}{R_{đ2}+R_{đ1}}}\) = I1đm + I2đm
thế số vô => R1


Câu 34:
\(u_0=acos\left(\omega t+\dfrac{\pi}{2}\right)\left(cm\right)\)
Tại \(t=\dfrac{\pi}{\omega}\Rightarrow u_M=acos\left(\omega.\dfrac{\pi}{\omega}+\dfrac{\pi}{2}-\dfrac{\pi}{2}\right)\Leftrightarrow-2=acos\left(\pi\right)\)
\(\Leftrightarrow-2=a\left(-1\right)\Leftrightarrow a=2\left(cm\right)\)
\(\Rightarrow\) Chọn C
Sao chỗ uM pt lại là acos(omega.pi/omega + pi/2 - pi/2) vậy bn?
Mik ko hiểu chỗ - pi/2.