l...
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 giờ trước (15:51)

a: \(\left(-\frac54x+3,25\right)\left\lbrack\frac35-\left(-\frac52x\right)\right\rbrack=0\)

=>\(\left(\frac54x-\frac{13}{4}\right)\left(\frac52x+\frac35\right)=0\)

=>\(\left[\begin{array}{l}\frac54x-\frac{13}{4}=0\\ \frac52x+\frac35=0\end{array}\right.\Rightarrow\left[\begin{array}{l}\frac54x=\frac{13}{4}\\ \frac52x=-\frac35\end{array}\right.\Rightarrow\left[\begin{array}{l}x=\frac{13}{4}:\frac54=\frac{13}{5}\\ x=-\frac35:\frac52=-\frac{6}{25}\end{array}\right.\)

b: \(\left(-\frac72x+1,75\right)\left\lbrack\frac45-\left(-\frac53x\right)\right\rbrack=0\)

=>\(\left[\begin{array}{l}-\frac72x+1,75=0\\ \frac45-\left(-\frac53x\right)=0\end{array}\right.\Longrightarrow\left[\begin{array}{l}-\frac72x=-1,75=-\frac74\\ \frac53x=-\frac45\end{array}\right.\)

=>\(\left[\begin{array}{l}x=\frac{-7}{4}:\frac{-7}{2}=\frac24=\frac12\\ x=-\frac45:\frac53=-\frac45\cdot\frac35=-\frac{12}{25}\end{array}\right.\)

c: \(\left(x^2-4\right)\left(x+\frac27\right)=0\)

=>\(\left[\begin{array}{l}x^2-4=0\\ x+\frac27=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x^2=4\\ x=-\frac27\end{array}\right.\Rightarrow\left[\begin{array}{l}x=2\\ x=-2\\ x=-\frac27\end{array}\right.\)

d: \(\left(25-x^2\right)\left(5x-\frac59\right)=0\)

=>\(\left[\begin{array}{l}25-x^2=0\\ 5x-\frac59=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x^2=25\\ 5x=\frac59\end{array}\right.\Rightarrow\left[\begin{array}{l}x=5\\ x=-5\\ x=\frac19\end{array}\right.\)

NV
13 tháng 1 2024

Do tam giác MQE vuông tại E \(\Rightarrow\widehat{EMQ}+\widehat{EQM}=90^0\) (1)

Mà \(\widehat{EQM}\) là góc ngoài của tam giác NPQ, theo tính chất góc ngoài của tam giác:

\(\widehat{EQM}=\widehat{ENP}+\widehat{QPN}\) (2)

\(\left(1\right);\left(2\right)\Rightarrow\widehat{EMQ}+\widehat{ENP}+\widehat{QPN}=90^0\)

\(\Rightarrow\widehat{EMQ}+\widehat{ENP}+\widehat{QPN}-90^0=0\)

S
28 tháng 8

bài 2: a. ta có góc ADE = góc ABC (= 45 độ)

mà 2 góc này ở vị trí đồng vị

⇒ DE // BC

b. ta có góc FEC = góc ECB

mà 2 góc này ở vị trí so le trong

⇒ EF // BC

c. vì DE // BC và EF // BC nên DE ≡ EF

⇒ 3 điểm D,E,F thẳng hàng

bài 3:

a. ta có góc CHK = góc CAB = 90 độ

mà 2 góc này ở vị trí đồng vị

⇒ KH // AB

b. ta có góc IKB = góc KBA = 60 độ

mà 2 góc này ở vị trí so le trong

⇒ KI // AB

c. vì KH // AB và KI // AB nên KH ≡ KI

⇒ 3 điểm H,K,I thẳng hàng

27 tháng 8

giups em bai 2 và 3


3 giờ trước (15:57)

a: Ta có: \(3x+\left(x-\frac{9}{20}\right)=-\frac{13}{40}\)

=>\(3x+x-\frac{9}{20}=-\frac{13}{40}\)

=>\(4x=-\frac{13}{40}+\frac{9}{20}=-\frac{13}{40}+\frac{18}{40}=\frac{5}{40}=\frac18\)

=>\(x=\frac18:4=\frac{1}{32}\)

b: \(x+\left(\frac14x-2,5\right)=-\frac{11}{20}\)

=>\(x+\frac14x-2,5=-\frac{11}{20}\)

=>\(1,25x=-0,55+2,5=1,95\)

=>\(x=\frac{1.95}{1.25}=\frac{195}{125}=\frac{39}{25}\)

c: \(\frac35x+\left(x+0,5\right)=-\frac{13}{15}\)

=>\(\frac35x+x+0,5=-\frac{13}{15}\)

=>\(\frac85x=-\frac{13}{15}-0,5=-\frac{26}{30}-\frac{15}{30}=-\frac{41}{30}\)

=>\(x=-\frac{41}{30}:\frac85=-\frac{41}{30}\cdot\frac58=\frac{-41}{6\cdot8}=-\frac{41}{48}\)

d: \(-\frac23x+\left(4x-\frac67\right)=\frac{9}{21}\)

=>\(-\frac23x+4x-\frac67=\frac37\)

=>\(\frac{10}{3}x=\frac37+\frac67=\frac97\)

=>\(x=\frac97:\frac{10}{3}=\frac97\cdot\frac{3}{10}=\frac{27}{70}\)

S
3 giờ trước (16:05)

bài 11: câu a:

\(3x+\left(x-\frac{9}{20}\right)=-\frac{13}{40}\)

\(3x+x-\frac{9}{20}=-\frac{13}{40}\)

\(4x=-\frac{13}{40}+\frac{9}{20}\)

\(4x=-\frac{13}{40}+\frac{18}{40}\)

\(4x=\frac{5}{40}\)

\(4x=\frac18\)

\(x=\frac18:4=\frac18\cdot\frac14=\frac{1}{32}\)

b. \(x+\left(\frac14x-2,5\right)=-\frac{11}{20}\)

\(x+\frac14x-2,5=-\frac{11}{20}\)

\(\frac54x-2,5=-\frac{11}{20}\)

\(\frac54x=-\frac{11}{20}+2,5\)

\(\frac54x=\frac{39}{20}\)

\(x=\frac{39}{20}:\frac54=\frac{39}{20}\cdot\frac45=\frac{39}{25}\)

c. \(\frac35x+\left(x+0,5\right)=-\frac{13}{15}\)

\(\frac35x+x+0,5=-\frac{13}{15}\)

\(\frac85x+\frac12=-\frac{13}{15}\)

\(\frac85x=-\frac{13}{15}-\frac12\)

\(\frac85x=-\frac{41}{30}\)

\(x=-\frac{41}{30}:\frac85=-\frac{41}{30}\cdot\frac58=-\frac{41}{48}\)

\(d.-\frac23x+\left(4x-\frac67\right)=\frac{9}{21}\)

\(-\frac23x+4x-\frac67=\frac{9}{21}\)

\(\frac{10}{3}x=\frac97\)

\(x=\frac97:\frac{10}{3}=\frac97\cdot\frac{3}{10}=\frac{27}{70}\)


3 giờ trước (15:49)

d: \(\left(-\frac34+\frac25\right):\frac37+\left(\frac35-\frac14\right):\frac37\)

\(=\left(-\frac34+\frac25+\frac35-\frac14\right):\frac37\)

\(=\left(1-1\right):\frac37=0\)

e: \(\frac59:\left(\frac{1}{11}-\frac{5}{22}\right)+\frac59:\left(\frac{1}{15}-\frac23\right)\)

\(=\frac59:\left(\frac{2}{22}-\frac{5}{22}\right)+\frac59:\left(\frac{1}{15}-\frac{10}{15}\right)\)

\(=\frac59:\frac{-3}{22}+\frac59:\frac{-9}{15}\)

\(=\frac59\cdot\frac{-22}{3}+\frac59\cdot\frac{-5}{3}=\frac59\left(-\frac{22}{3}-\frac53\right)=\frac59\cdot\frac{-27}{3}=-5\)

3 giờ trước (15:50)

26 tháng 1 2024

loading... a) ∆ABC cân tại A

⇒ ∠ABC = ∠ACB

Mà ∠ACB = ∠ECN (đối đỉnh)

⇒ ∠ABC = ∠ECN

⇒ ∠DBM = ∠ECN

Xét hai tam giác vuông: ∆DBM và ∆ECN có:

BD = CE (gt)

∠DBM = ∠ECN (cmt)

⇒ ∆DBM = ∆ECN (cạnh góc vuông - góc nhọn kề)

⇒ DM = EN (hai cạnh tương ứng)

b) Do DM ⊥ BC (gt)

EN ⊥ BC (gt)

⇒ DM // EN

⇒ ∠DMI = ∠ENI (so le trong)

Xét hai tam giác vuông: ∆DMI và ∆ENI có:

DM = EN (cmt)

∠DMI = ∠ENI (cmt)

⇒ ∆DMI = ∆ENI (cạnh góc vuông - góc nhọn kề)

⇒ MI = NI (hai cạnh tương ứng)

⇒ I là trung điểm của MN

⇒ BC cắt MN tại trung điểm I của MN

c) Do AH ⊥ BC nên AH là đường cao của ∆ABC

Mà ∆ABC cân tại A

AH cũng là đường phân giác của ∆ABC

⇒ ∠BAH = ∠CAH

⇒ ∠BAO = ∠CAO

Do ∆ABC cân tại A (gt)

⇒ AB = AC

Xét ∆OAB và ∆OAC có:

OA là cạnh chung

∠BAO = ∠CAO (cmt)

AB = AC (cmt)

⇒ ∆OAB = ∆OAC (c-g-c)

⇒ OB = OC (hai cạnh tương ứng)

Ta có:

I là trung điểm MN (cmt)

OI ⊥ MN (gt)

⇒ OI là đường trung trực của MN

⇒ OM = ON

Do ∆DBM = ∆ECN (cmt)

⇒ BM = CN (hai cạnh tương ứng)

Xét ∆OBM và ∆OCN có:

OB = OC (cmt)

OM = ON (cmt)

BM = CN (cmt)

⇒ ∆OBM = ∆OCN (c-c-c)

d) Do ∆OBM = ∆OCN (cmt)

⇒ ∠OBM = ∠OCN (hai góc tương ứng)

Do ∆OAB = ∆OAC (cmt)

⇒ ∠OBA = ∠OCA (hai góc tương ứng)

⇒ ∠OBM = ∠OCA

Mà ∠OBM = ∠OCN (cmt)

⇒ ∠OCN = ∠OCA

Mà ∠OCN + ∠OCA = 180⁰ (kề bù)

⇒ ∠OCN = ∠OCA = 180⁰ : 2 = 90⁰

⇒ OC ⊥ AC

26 tháng 1 2024

a) ∆ABC cân tại A

⇒ ∠ABC = ∠ACB

Mà ∠ACB = ∠ECN (đối đỉnh)

⇒ ∠ABC = ∠ECN

⇒ ∠DBM = ∠ECN

Xét hai tam giác vuông: ∆DBM và ∆ECN có:

BD = CE (gt)

∠DBM = ∠ECN (cmt)

⇒ ∆DBM = ∆ECN (cạnh góc vuông - góc nhọn kề)

⇒ DM = EN (hai cạnh tương ứng)

b) Do DM ⊥ BC (gt)

EN ⊥ BC (gt)

⇒ DM // EN

⇒ ∠DMI = ∠ENI (so le trong)

Xét hai tam giác vuông: ∆DMI và ∆ENI có:

DM = EN (cmt)

∠DMI = ∠ENI (cmt)

⇒ ∆DMI = ∆ENI (cạnh góc vuông - góc nhọn kề)

⇒ MI = NI (hai cạnh tương ứng)

⇒ I là trung điểm của MN

⇒ BC cắt MN tại trung điểm I của MN

c) Do AH ⊥ BC nên AH là đường cao của ∆ABC

Mà ∆ABC cân tại A

AH cũng là đường phân giác của ∆ABC

⇒ ∠BAH = ∠CAH

⇒ ∠BAO = ∠CAO

Do ∆ABC cân tại A (gt)

⇒ AB = AC

Xét ∆OAB và ∆OAC có:

OA là cạnh chung

∠BAO = ∠CAO (cmt)

AB = AC (cmt)

⇒ ∆OAB = ∆OAC (c-g-c)

⇒ OB = OC (hai cạnh tương ứng)

Ta có:

I là trung điểm MN (cmt)

OI ⊥ MN (gt)

⇒ OI là đường trung trực của MN

⇒ OM = ON

Do ∆DBM = ∆ECN (cmt)

⇒ BM = CN (hai cạnh tương ứng)

Xét ∆OBM và ∆OCN có:

OB = OC (cmt)

OM = ON (cmt)

BM = CN (cmt)

⇒ ∆OBM = ∆OCN (c-c-c)

d) Do ∆OBM = ∆OCN (cmt)

⇒ ∠OBM = ∠OCN (hai góc tương ứng)

Do ∆OAB = ∆OAC (cmt)

⇒ ∠OBA = ∠OCA (hai góc tương ứng)

⇒ ∠OBM = ∠OCA

Mà ∠OBM = ∠OCN (cmt)

⇒ ∠OCN = ∠OCA

Mà ∠OCN + ∠OCA = 180⁰ (kề bù)

⇒ ∠OCN = ∠OCA = 180⁰ : 2 = 90⁰

⇒ OC ⊥ AC

26 tháng 1 2024

loading... a) ∆ABC cân tại A

⇒ ∠ABC = ∠ACB

Mà ∠ACB = ∠ECN (đối đỉnh)

⇒ ∠ABC = ∠ECN

⇒ ∠DBM = ∠ECN

Xét hai tam giác vuông: ∆DBM và ∆ECN có:

BD = CE (gt)

∠DBM = ∠ECN (cmt)

⇒ ∆DBM = ∆ECN (cạnh góc vuông - góc nhọn kề)

⇒ DM = EN (hai cạnh tương ứng)

b) Do DM ⊥ BC (gt)

EN ⊥ BC (gt)

⇒ DM // EN

⇒ ∠DMI = ∠ENI (so le trong)

Xét hai tam giác vuông: ∆DMI và ∆ENI có:

DM = EN (cmt)

∠DMI = ∠ENI (cmt)

⇒ ∆DMI = ∆ENI (cạnh góc vuông - góc nhọn kề)

⇒ MI = NI (hai cạnh tương ứng)

⇒ I là trung điểm của MN

⇒ BC cắt MN tại trung điểm I của MN

c) Do AH ⊥ BC nên AH là đường cao của ∆ABC

Mà ∆ABC cân tại A

AH cũng là đường phân giác của ∆ABC

⇒ ∠BAH = ∠CAH

⇒ ∠BAO = ∠CAO

Do ∆ABC cân tại A (gt)

⇒ AB = AC

Xét ∆OAB và ∆OAC có:

OA là cạnh chung

∠BAO = ∠CAO (cmt)

AB = AC (cmt)

⇒ ∆OAB = ∆OAC (c-g-c)

⇒ OB = OC (hai cạnh tương ứng)

Ta có:

I là trung điểm MN (cmt)

OI ⊥ MN (gt)

⇒ OI là đường trung trực của MN

⇒ OM = ON

Do ∆DBM = ∆ECN (cmt)

⇒ BM = CN (hai cạnh tương ứng)

Xét ∆OBM và ∆OCN có:

OB = OC (cmt)

OM = ON (cmt)

BM = CN (cmt)

⇒ ∆OBM = ∆OCN (c-c-c)

d) Do ∆OBM = ∆OCN (cmt)

⇒ ∠OBM = ∠OCN (hai góc tương ứng)

Do ∆OAB = ∆OAC (cmt)

⇒ ∠OBA = ∠OCA (hai góc tương ứng)

⇒ ∠OBM = ∠OCA

Mà ∠OBM = ∠OCN (cmt)

⇒ ∠OCN = ∠OCA

Mà ∠OCN + ∠OCA = 180⁰ (kề bù)

⇒ ∠OCN = ∠OCA = 180⁰ : 2 = 90⁰

⇒ OC ⊥ AC

AH
Akai Haruma
Giáo viên
26 tháng 1 2024

Lời giải:
Trên $AC$ lấy $E$ sao cho $AB=AE$. Xét tam giác $ABD$ và $AED$ có:

$\widehat{BAD}=\widehat{EAD}$ (do $AD$ là tia phân giác $\widehat{A}$)

$AD$ chung

$AB=AE$

$\Rightarrow \triangle ABD=\triangle AED$ (c.g.c)

$\Rightarrow BD=DE(1)$ và $\widehat{ABD}=\widehat{AED}$

Có:

$\widehat{DEC}=180^0-\widehat{AED}=180^0-\widehat{ABD}=\widehat{ECD}+\widehat{BAC}> \widehat{ECD}$

$\Rightarrow DC> DE(2)$

Từ $(1); (2)\Rightarrow DC> DB$

AH
Akai Haruma
Giáo viên
26 tháng 1 2024

Hình vẽ: