K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có

AF,BE,CD là các đường trung tuyến

G là trọng tâm

Do đó: AF,BE,CD đồng quy tại G

Xét tứ giác AGBK có

D là trung điểm chung của AB và KG

=>AGBK là hình bình hành

=>AG//BK và AG=BK

Xét tứ giác AGCH có

E là trung điểm chung của AC và GH

=>AGCH là hình bình hành

=>AG//CH và AG=CH

Ta có: AG//BK

AG//CH

Do đó: BK//CH

ta có: AG=BK

AG=CH

Do đó: BK=CH

Xét tứ giác BKHC có

BK//HC

BK=HC

Do đó: BKHC là hình bình hành

b: Ta có: C,G,D thẳng hàng

G,D,K thẳng hàng

Do đó: C,G,D,K thẳng hàng

=>CK đi qua G

Ta có: B,G,E thẳng hàng

G,E,H thẳng hàng

Do đó: B,G,E,H thẳng hàng

=>BH đi qua G

BCHK là hình bình hành

=>BH cắt CK tại trung điểm của mỗi đường

=>G là trung điểm chung của BH và CK

Hình bình hành BCHK trở thành hình chữ nhật khi KB⊥BC

=>AG⊥BC

=>AF⊥BC

Xét ΔABC có

AF là đường cao

AF là đường trung tuyến

Do đó: ΔABC cân tại A

=>AB=AC

a: Xét ΔKAD và ΔBDA có

\(\hat{KAD}=\hat{BDA}\) (hai góc so le trong, AK//BD)

AD chung

\(\hat{KDA}=\hat{BAD}\) (hai góc so le trong, AB//CD)

Do đó: ΔKAD=ΔBDA

=>KA=BD

mà BD=AC

nên AK=AC

=>ΔAKC cân tại A

b: ΔAKC cân tại A

=>\(\hat{AKC}=\hat{ACK}\)

\(\hat{AKC}=\hat{BDC}\) (hai góc đồng vị, BD//AK)

nên \(\hat{BDC}=\hat{ACD}\)

Xét ΔBDC va ΔACD có

BD=AC

\(\hat{BDC}=\hat{ACD}\)

CD chung

Do đó: ΔBDC=ΔACD

=>\(\hat{BCD}=\hat{ADC}\)

=>ABCD là hình thang cân

18 tháng 9

Bài 2

loading...

∆ADE có:

AD = AE (gt)

⇒ ∆ADE cân tại A

⇒ ∠ADE = (180⁰ - ∠DAE) : 2 = (180⁰ - ∠BAC) : 2 (1)

∆ABC cân tại A (gt)

⇒ ∠ABC = (180⁰ - ∠BAC) : 2 (2)

Từ (1) và (2) suy ra ∠ADE = ∠ABC

Mà ∠ADE và ∠ABC là hai góc đồng vị

⇒ DE // BC

∆ABC cân tại A (gt)

⇒ ∠ABC = ∠ACB

⇒ ∠DBC = ∠ECB

Tứ giác BDEC có:

DE // BC (cmt)

⇒ BDEC là hình thang

Mà ∠DBC = ∠ECB (cmt)

⇒ BDEC là hình thang cân

18 tháng 9

Bài 3

loading...

a) ABC cân tại A (gt)

AB = AC và ABC = ACB

Xét hai tam giác vuông: ABD và ACE có:

AB = AC (cmt)

A chung

ABD = ACE (cạnh huyền - góc nhọn)

AD = AE

b) ∆ADE có:

AD = AE (gt)

⇒ ∆ADE cân tại A

⇒ ∠AED = (180⁰ - ∠EAD) : 2 = (180⁰ - ∠BAC) : 2 (1)

∆ABC cân tại A (gt)

⇒ ∠ABC = (180⁰ - ∠BAC) : 2 (2)

Từ (1) và (2) suy ra ∠AED = ∠ABC

Mà ∠AED và ∠ABC là hai góc đồng vị

⇒ DE // BC

∆ABC cân tại A (gt)

⇒ ∠ABC = ∠ACB

⇒ ∠EBC = ∠DCB

Tứ giác BEDC có:

DE // BC (cmt)

⇒ BEDC là hình thang

Mà ∠EBC = ∠DCB (cmt)

⇒ BEDC là hình thang cân

Bài 2:

a: ĐKXĐ: x∉{2;-2}

b: \(A=\frac{3x}{x-2}-\frac{2}{x+2}+\frac{2x-4}{x^2-4}\)

\(=\frac{3x}{x-2}-\frac{2}{x+2}+\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{3x}{x-2}-\frac{2}{x+2}+\frac{2}{x+2}=\frac{3x}{x-2}\)

c: Thay x=-5 vào A, ta được:

\(A=\frac{3\cdot\left(-5\right)}{-5-2}=\frac{-15}{-7}=\frac{15}{7}\)

d: Để A nguyên thì 3x⋮x-2

=>3x-6+6⋮x-2

=>6⋮x-2

=>x-2∈{1;-1;2;-2;3;-3;6-6}

=>x∈{1;2;4;0;5;-1;8;-4}

Kết hợp ĐKXĐ, ta được: x∈{1;4;0;5;-1;8;-4}

Bài 1:

a: \(A=x^2+10x+25\)

\(=x^2+2\cdot x\cdot5+5^2=\left(x+5\right)^2\)

b: \(B=x^2-y^2+8x-8y\)

=(x-y)(x+y)+8(x-y)

=(x-y)(x+y+8)

c: \(C=x^2+4x-5\)

\(=x^2+5x-x-5\)

=x(x+5)-(x+5)

=(x+5)(x-1)

\(\frac{9x+5}{6\cdot\left(x+3\right)^2}-\frac{5x-7}{6\left(x+3\right)^2}\)

\(=\frac{9x+5-5x+7}{6\left(x+3\right)^2}\)

\(=\frac{4x+12}{6\left(x+3\right)^2}=\frac{4\left(x+3\right)}{6\left(x+3\right)^2}=\frac{2}{3\left(x+3\right)}\)

QT
Quoc Tran Anh Le
Giáo viên
28 tháng 8

a:


b: TH1: \(\hat{BAD}>90^0;\hat{ABD}>90^0\)

Ta có: ABCD là hình thang

=>\(\hat{ABC}+\hat{BCD}=180^0\)

=>\(\hat{BCD}<180^0-90^0=90^0\)

=>\(\hat{BCD}<\hat{BAD}\)

TH2: \(\hat{ADC}>90^0;\hat{DCB}>90^0\)

Ta có: ABCD là hình thang

DC//AB

=>\(\hat{CDA}+\hat{DAB}=180^0\)

=>\(\hat{DAB}<180^0-90^0=90^0\)

=>\(\hat{DAB}<\hat{DCB}\)

c: Xét tứ giác ABCD có

AB//CD
AB=CD

Do đó: ABCD là hình bình hành

Bài 6:

a: Xét tứ giác AMCK có

I là trung điểm chung của AC và MK

=>AMCK là hình bình hành

b: ΔABC vuông tại A

mà AM là đường trung tuyến

nên AM=MB=MC

Xét hình bình hành AMCK có MA=MC

nên AMCK là hình thoi

c: Ta có: AMCK là hình thoi

=>AK//CM và AK=CM

AK//CM

=>AK//MB

Ta có: AK=CM

CM=MB

Do đó; AK=MB

Xét tứ giác ABMK có

AK//MB

AK=MB

Do đó; ABMK là hình bình hành

d: Xét tứ giác ABEC có

M là trung điểm chung của AE và BC

=>ABEC là hình bình hành

Hình bình hành ABEC có AB=AC

nên ABEC là hình thoi

Bài 5:

a: Xét ΔAHD vuông tại H và ΔCKB vuông tại K có

AD=CB

\(\hat{ADH}=\hat{CBK}\) (hai góc so le trong, AD//BC)

Do đó: ΔAHD=ΔCKB

b: ΔAHD=ΔCKB

=>HD=KB; AH=CK

ta có: AH⊥BD

CK⊥BD

Do đó:AH//CK

Xét tứ giác AHCK có

AH//CK

AH=CK

Do đó: AHCK là hình bình hành

c: Ta có: AH//CK

=>AM//CN

ta có: AB//CD
=>AN//CM

Xét tứ giác ANCM có

AN//CM

AM//CN

Do đó: ANCM là hình bình hành

d: Ta có; ANCM là hình bình hành

=>AC cắt NM tại trung điểm của mỗi đường(1)

Ta có:ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường(2)

Từ (1),(2) suy ra AC,MN,BD đồng quy

Bài 2:

a: Ta có: \(AE=EB=\frac{AB}{2}\)

\(DF=FC=\frac{DC}{2}\)

mà AB=CD

nên AE=EB=DF=FC

Xét tứ giác AECF có

AE//CF

AE=CF

Do đó: AECF là hình bình hành

b: Xét tứ giác BEDF có

BE//DF

BE=DF

Do đó: BEDF là hình bình hành

=>DE//BF

=>FN//EM

Ta có: AECF là hình bình hành

=>AF//CE

=>FM//EN

Xét tứ giác MENF có

ME//NF

MF//NE

Do đó: MENF là hình bình hành

c: Ta có: MENF là hình bình hành

=>MN cắt EF tại trung điểm của mỗi đường(1)

Ta có: AECF là hình bình hành

=>AC cắt EF tại trung điểm của mỗi đường(2)

Từ (1),(2) suy ra AC,EF,MN đồng quy