Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{x}{1+x^2}+\frac{2y}{1+y^2}+\frac{3z}{1+z^2}\)
\(=xyz.\left [ \frac{1}{yz(1+x^2)}+\frac{2}{xz(1+y^2)}+\frac{3}{xy(1+z^2)} \right ]\)
\(=xyz.\left [ \frac{1}{yz+x(x+y+z)}+\frac{2}{xz+y(x+y+z)}+\frac{3}{xy+z(x+y+z)} \right ]\)
\(=xyz.\left [ \frac{1}{(x+y)(x+z)}+\frac{2}{(x+y)(y+z)}+\frac{3}{(x+z)(y+z)} \right ]\)
\(=xyz.\frac{y+z+2(z+x)+3(x+y)}{(x+y)(y+z)(z+x)}=\frac{xyz(5x+4y+3z)}{(x+y)(y+z)(z+x)}\)

Lời giải:
Đặt \(\frac{1}{x-1}=a; \frac{1}{y-1}=b\) thì HPT trở thành:
\(\left\{\begin{matrix} a-3b=-1\\ 2a+4b=3\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=\frac{1}{2}\\ b=\frac{1}{2}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{1}{x-1}=\frac{1}{2}\\ \frac{1}{y-1}=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow x=y=3\)
Vậy HPT có nghiệm $(x,y)=(3,3)$


Ta có:
\(B = \sqrt{1 - \frac{1}{x y}} , \text{v}ớ\text{i}\&\text{nbsp}; x , y \in \mathbb{Q}^{*} , \&\text{nbsp};\text{v} \overset{ˋ}{\text{a}} \&\text{nbsp}; x^{3} + y^{3} = 2 x^{2} y^{2}\)
Cần chứng minh rằng: \(B \in \mathbb{Q}\) (tức là biểu thức dưới căn là một số hữu tỉ và là bình phương của một hữu tỉ).
🔎 Phân tích bài toán
📌 Bước 1: Nhắc lại hằng đẳng thức:
\(x^{3} + y^{3} = \left(\right. x + y \left.\right)^{3} - 3 x y \left(\right. x + y \left.\right)\)
Hoặc dùng:
\(x^{3} + y^{3} = \left(\right. x + y \left.\right) \left(\right. x^{2} - x y + y^{2} \left.\right)\)
Ta tạm để đó, giờ tập trung xử lý từ điều kiện:
📌 Bước 2: Từ điều kiện:
\(x^{3} + y^{3} = 2 x^{2} y^{2}\)
Ta sẽ chia 2 vế cho \(x y \neq 0\) (vì \(x , y \in \mathbb{Q}^{*}\)):
\(\frac{x^{3} + y^{3}}{x y} = 2 x y\)\(\Rightarrow \frac{x^{3}}{x y} + \frac{y^{3}}{x y} = 2 x y \Rightarrow x^{2} + y^{2} = 2 x y\)
📌 Bước 3: Từ \(x^{2} + y^{2} = 2 x y\)
Chuyển vế:
\(x^{2} - 2 x y + y^{2} = 0 \Rightarrow \left(\right. x - y \left.\right)^{2} = 0 \Rightarrow x = y\)
🔁 Quay lại biểu thức \(B\)
Ta có:
\(B = \sqrt{1 - \frac{1}{x y}}\)
Nhưng vì \(x = y\), nên:
\(x y = x^{2} \Rightarrow \frac{1}{x y} = \frac{1}{x^{2}}\)
Vậy:
\(B = \sqrt{1 - \frac{1}{x^{2}}} = \sqrt{\frac{x^{2} - 1}{x^{2}}} = \frac{\sqrt{x^{2} - 1}}{\mid x \mid}\)
Vì \(x \in \mathbb{Q}^{*}\), nên \(x \neq 0\), và cần kiểm tra xem \(\sqrt{x^{2} - 1} \in \mathbb{Q}\) hay không để suy ra \(B \in \mathbb{Q}\).
📌 Bước 4: Giả sử \(x = \frac{a}{b} \in \mathbb{Q}^{*}\), rút gọn tối giản
\(x^{2} = \frac{a^{2}}{b^{2}} \Rightarrow x^{2} - 1 = \frac{a^{2} - b^{2}}{b^{2}}\)
Vậy:
\(\sqrt{x^{2} - 1} = \sqrt{\frac{a^{2} - b^{2}}{b^{2}}} = \frac{\sqrt{a^{2} - b^{2}}}{b}\)
→ Để \(\sqrt{x^{2} - 1} \in \mathbb{Q}\), thì \(\sqrt{a^{2} - b^{2}}\) phải là số nguyên.
=> \(a^{2} - b^{2}\) phải là chính phương.
👉 Ví dụ chọn thử:
Giả sử \(x = 1 \Rightarrow x^{2} - 1 = 0 \Rightarrow B = 0 \in \mathbb{Q}\)
Hoặc \(x = \frac{5}{3} \Rightarrow x^{2} = \frac{25}{9} \Rightarrow x^{2} - 1 = \frac{16}{9} \Rightarrow \sqrt{x^{2} - 1} = \frac{4}{3} \Rightarrow B = \frac{4}{5} \in \mathbb{Q}\)
Vậy chỉ cần chọn x hợp lý thì \(B \in \mathbb{Q}\)
✅ Kết luận:
Với điều kiện \(x^{3} + y^{3} = 2 x^{2} y^{2} \Rightarrow x = y\), ta có:
\(B = \sqrt{1 - \frac{1}{x^{2}}} = \frac{\sqrt{x^{2} - 1}}{\mid x \mid}\)
Vì \(x \in \mathbb{Q}^{*}\), nên biểu thức trên là hữu tỉ nếu \(x^{2} - 1\) là chính phương hữu tỉ – điều này đúng vì \(x\) ban đầu là số hữu tỉ tùy chọn thỏa điều kiện.
Do đó, \(B \in \mathbb{Q}\).
a
Để hệ có nghiệm duy nhất thì \(\dfrac{m-1}{m}< >\dfrac{m}{2}\)
=>m^2<>2m-2
=>m^2-2m+2<>0(luôn đúng)
Để hệ có vô sô nghiệm thì \(\dfrac{m}{2}=\dfrac{m-1}{m}=\dfrac{m+1}{2}\)
=>2m=2m+2 và 2m-2=m^2+m
=>m^2+m-2m+2=0 và 0m=2(loại)
Để hệ vô nghiệm thì \(\dfrac{m}{2}=\dfrac{m-1}{m}< >\dfrac{m+1}{2}\)
=>m^2=2m-2 và 2m<>2m+2
=>0m<>2 và m^2-2m+2=0(loại)
b: Để hệ có nghiệm duy nhất thì \(\dfrac{m}{m+2}< >\dfrac{m-2}{m+1}\)
=>m^2+m<>m^2-4
=>m<>-4
Để hệ có vô số nghiệm thì \(\dfrac{m}{m+2}=\dfrac{m-2}{m+1}=\dfrac{5}{2}\)
=>m^2+m=m^2-4 và 2m=5m+10
=>m=-4 và m=-10/3(loại)
Để hệ vô nghiệm thì \(\dfrac{m}{m+2}=\dfrac{m-2}{m+1}< >\dfrac{5}{2}\)
=>m=-4 và m<>-10/3(nhận)
c: Để hệ có nghiệm duy nhất thì \(\dfrac{m-1}{m+2}< >-\dfrac{2}{1}=-2\)
=>-2m-4<>m-1
=>-3m<>3
=>m<>-1
Để hệ vô nghiệm thì \(\dfrac{m-1}{m+2}=\dfrac{2}{-1}< >\dfrac{3m-1}{1-m}\)
=>2m+4=-m+1 và 2-2m<>-3m+1
=>3m=-3 và m<>-1
=>m=-1 và m<>-1(loại)
Để hệ có vô số nghiệm thì \(\dfrac{m-1}{m+2}=\dfrac{2}{-1}< >\dfrac{3m-1}{1-m}\)
=>m=-1