Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

cho tam giác ABC vuông tại A .Biết AB=7cm và AC=21 cm .tính các tỉ số lượng giác của góc B vá góc C

b) Ta có:
\(\widehat{B}=180^o-90^o-42^o=48^o\)
Xét tam giác ABC vuông tại A ta có:
\(cosB=\dfrac{AB}{BM}\Rightarrow cos48^o=\dfrac{6}{BM}\)
\(\Rightarrow BM=\dfrac{6}{cos48^o}\approx9\left(cm\right)\)
Mà: \(sinB=\dfrac{AM}{BM}\Rightarrow sin48^o=\dfrac{AM}{9}\)
\(\Rightarrow AM=9\cdot sin48^o\approx6,7\left(cm\right)\)

a: Xét ΔABC vuông tại A có \(cosABC=\frac{AB}{BC}\)
=>\(\frac{6}{BC}=\frac35=\frac{6}{10}\)
=>BC=10(cm)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=10^2-6^2=100-36=64=8^2\)
=>AC=8(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=BA^2\)
=>\(BH=\frac{6^2}{10}=3,6\left(\operatorname{cm}\right)\)
b: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1),(2) suy ra \(AD\cdot AB=AE\cdot AC\)
c: ΔABC vuông tại A
mà AI là đường trung tuyến
nên IA=IC=IB
IA=IC
=>ΔIAC cân tại I
=>\(\hat{IAC}=\hat{ICA}=\hat{ACB}\)
Ta có: \(AD\cdot AB=AE\cdot AC\)
=>\(\frac{AD}{AC}=\frac{AE}{AB}\)
Xét ΔADE vuông tại A và ΔACB vuông tại A có
\(\frac{AD}{AC}=\frac{AE}{AB}\)
Do đó: ΔADE~ΔACB
=>\(\hat{AED}=\hat{ABC}\)
\(\hat{AED}+\hat{IAC}=\hat{ABC}+\hat{ACB}=90^0\)
=>AI⊥DE tại K
=>\(\hat{AKE}=90^0\)

a: Xét ΔABC vuông tại A có \(cosABC=\frac{AB}{BC}\)
=>\(\frac{6}{BC}=\frac35=\frac{6}{10}\)
=>BC=10(cm)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=10^2-6^2=100-36=64=8^2\)
=>AC=8(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=BA^2\)
=>\(BH=\frac{6^2}{10}=3,6\left(\operatorname{cm}\right)\)
b: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1),(2) suy ra \(AD\cdot AB=AE\cdot AC\)
c: ΔABC vuông tại A
mà AI là đường trung tuyến
nên IA=IC=IB
IA=IC
=>ΔIAC cân tại I
=>\(\hat{IAC}=\hat{ICA}=\hat{ACB}\)
Ta có: \(AD\cdot AB=AE\cdot AC\)
=>\(\frac{AD}{AC}=\frac{AE}{AB}\)
Xét ΔADE vuông tại A và ΔACB vuông tại A có
\(\frac{AD}{AC}=\frac{AE}{AB}\)
Do đó: ΔADE~ΔACB
=>\(\hat{AED}=\hat{ABC}\)
\(\hat{AED}+\hat{IAC}=\hat{ABC}+\hat{ACB}=90^0\)
=>AI⊥DE tại K
=>\(\hat{AKE}=90^0\)

a: góc C=90-40=50 độ
sin C=AB/BC
=>7/BC=sin50
=>BC=9,14(cm)
=>\(AC\simeq5,88\left(cm\right)\)
b: góc B=90-30=60 độ
sin C=AB/BC
=>AB/16=1/2
=>AB=8cm
=>AC=8*căn 3(cm)
c: BC=căn 18^2+21^2=3*căn 85(cm)
tan C=AB/AC=6/7
=>góc C=41 độ
=>góc B=49 độ
d: AB=căn 13^2-12^2=5cm
sin C=AB/BC=5/13
=>góc C=23 độ
=>góc B=67 độ