Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) dat x-1=a
x=a+1
\(a+1+\sqrt{5+\sqrt{a}}=6\)
\(5-a=\sqrt{5+\sqrt{a}}\)
\(25-10a+a^2=5+\sqrt{a}\)
\(20-10a+a^2-\sqrt{a}=0\)
(a - \sqrt{5} - 5) (a + \sqrt{a} - 4) = 0

Bài 6:
ĐK: $x\geq \frac{2}{3}$
Đặt $\sqrt{4x+1}=a; \sqrt{3x-2}=b(a,b\geq 0)$
PT trở thành:
$a-b=a^2-b^2$
$\Leftrightarrow (a-b)(a+b)-(a-b)=0$
$\Leftrightarrow (a-b)(a+b-1)=0$
Nếu $a-b=0\Leftrightarrow 4x+1=3x-2\Leftrightarrow x=-3$ (loại vì không thỏa ĐKXĐ)
Nếu $a+b-1=0$
$\Leftrightarrow b=1-a$
$\Leftrightarrow \sqrt{3x-2}=1-\sqrt{4x+1}$
$\Rightarrow 3x-2=4x+2-2\sqrt{4x+1}$
$\Leftrightarrow x+4=2\sqrt{4x+1}$
$\Rightarrow (x+4)^2=4(4x+1)$
$\Leftrightarrow x^2-8x+12=0\Leftrightarrow x=6$ hoặc $x=2$
Vậy.......
Bài 5:
ĐK: $x\geq -2$
PT $\Leftrightarrow 3\sqrt{(x+2)(x^2-2x+4)}=2x^2-3x+10$
Đặt $\sqrt{x+2}=a; \sqrt{x^2-2x+4}=b(a,b\geq 0)$
Khi đó PT trở thành:
$3ab=2b^2+a^2$
$\Leftrightarrow a^2-3ab+2b^2=0$
$\Leftrightarrow a(a-b)-2b(a-b)=0$
$\Leftrightarrow (a-b)(a-2b)=0$
Nếu $a-b=0\Rightarrow a^2-b^2=0$
$\Leftrightarrow x+2-(x^2-2x+4)=0$
$\Leftrightarrow x^2-3x+2=0\Rightarrow x=1$ hoặc $x=2$ (thỏa mãn)
Nếu $a-2b=0\Rightarrow 4b^2-a^2=0$
$\Leftrightarrow 4(x^2-2x+4)-(x+2)=0$
$\Leftrightarrow 4x^2-9x+14=0$ (pt vô nghiệm)
Vậy.........

a, dk \(x\ge0\)
ap dung bdt cosi ta co
\(\sqrt{x+3}+\frac{4x}{\sqrt{x+3}}\ge2\sqrt{4x}=4\sqrt{x}\)
dau = xay ra \(\Leftrightarrow\sqrt{x+3}=\frac{4x}{\sqrt{x+3}}\Leftrightarrow x+3=4x\Rightarrow x=1\)(tm dk)
kl x=1 la no cua pt

a)\(2x^2+x+3=3x\sqrt{x+3}\)
ĐK:\(x\ge-3\)
\(pt\Leftrightarrow2x^2+x-3=3x\sqrt{x+3}-6\)
\(\Leftrightarrow2x^2+x-3=\frac{9x^2\left(x+3\right)-36}{3x\sqrt{x+3}+6}\)
\(\Leftrightarrow2x^2+x-3-\frac{9x^3+27x^2-36}{3x\sqrt{x+3}+6}=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)-\frac{9\left(x-1\right)\left(x+2\right)^2}{3x\sqrt{x+3}+6}=0\)
\(\Leftrightarrow\left(x-1\right)\left[2x+3-\frac{9\left(x+2\right)^2}{3x\sqrt{x+3}+6}\right]=0\)
.....................
b) sai đề hay vô nghiệm nhỉ

a: ĐKXĐ: x∉{5;-5}
Ta có: \(\frac{2}{x-5}+\frac{3}{x+5}+\frac{-2x+20}{x^2-25}=0\)
=>\(\frac{2}{x-5}+\frac{3}{x+5}+\frac{-2x+20}{\left(x-5\right)\left(x+5\right)}=0\)
=>\(\frac{2\left(x+5\right)+3\left(x-5\right)-2x+20}{\left(x-5\right)\left(x+5\right)}=0\)
=>2(x+5)+3(x-5)-2x+20=0
=>2x+10+3x-15-2x+20=0
=>3x+15=0
=>3x=-15
=>x=-5(loại)
b: ĐKXĐ: x∉{2;-2}
Ta có: \(\frac{3x}{x-2}+\frac{4x}{x+2}+\frac{-5x^2-2x}{x^2-4}=0\)
=>\(\frac{3x}{x-2}+\frac{4x}{x+2}+\frac{-5x^2-2x}{\left(x-2\right)\left(x+2\right)}=0\)
=>\(\frac{3x\left(x+2\right)+4x\left(x-2\right)-5x^2-2x}{\left(x-2\right)\left(x+2\right)}=0\)
=>\(3x\left(x+2\right)+4x\left(x-2\right)-5x^2-2x=0\)
=>\(3x^2+6x+4x^2-8x-5x^2-2x=0\)
=>\(2x^2-4x=0\)
=>2x(x-2)=0
=>x(x-2)=0
=>\(\left[\begin{array}{l}x=0\\ x-2=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\left(nhận\right)\\ x=2\left(loại\right)\end{array}\right.\)
\(x^2-4x-1+3x\sqrt{x-\frac{1}{x}}=0\)
Ta có: \(x=0\) không phải là nghiệm của phương trình nên phương trình đã cho tương đương với:
\(\left(x-\frac{1}{x}\right)+3\sqrt{x-\frac{1}{4}}=4\)
Đặt: \(t=\sqrt{x-\frac{1}{x}}\left(t\ge0\right)\)
Ta giải pt \(t^2+3t-4=0\) ra và được nghiệm \(\left[{}\begin{matrix}t=1\\t=4\left(ktm\right)\end{matrix}\right.\)
Giải pt \(\sqrt{x-\frac{1}{x}}=1\) có nghiệm \(x=\frac{1\pm\sqrt{5}}{2}\)
Vậy pt có tập \(n_0S=\left\{\frac{1\pm\sqrt{5}}{2}\right\}\)