Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 ĐKXD \(x\ge1\)
.\(2x^2+5x-1=7\sqrt{\left(x-1\right)\left(x^2+x+1\right)}\)
Đặt \(\sqrt{x-1}=a;\sqrt{x^2+x+1}=b\left(a,b\ge0\right)\)
=> \(2b^2+3a^2=2x^2+5x-1\)
=> \(2b^2+3a^2-7ab=0\)
<=> \(\orbr{\begin{cases}a=2b\\a=\frac{1}{3}b\end{cases}}\)
+ \(a=2b\)
=> \(2\sqrt{x^2+x+1}=\sqrt{x-1}\)
=> \(4x^2+3x+5=0\)vô nghiệm
+ \(a=\frac{1}{3}b\)
=> \(\sqrt{x^2+x+1}=3\sqrt{x-1}\)
=> \(x^2-8x+10=0\)
<=> \(\orbr{\begin{cases}x=4+\sqrt{6}\left(tmĐK\right)\\x=4-\sqrt{6}\left(kotmĐK\right)\end{cases}}\)
Vậy \(x=4+\sqrt{6}\)
ĐKXĐ:\(2x^2-1\ge0;x^2-3x-2\ge0;2x^2+2x+3\ge0;x^2-x+2\ge0\)
\(\sqrt{2x^2-1}+\sqrt{x^2-3x-2}=\sqrt{2x^2+2x+3}+\sqrt{x^2-x+2}\)
<=> \(\left(\sqrt{2x^2+2x+3}-\sqrt{2x^2-1}\right)+\left(\sqrt{x^2-x+2}-\sqrt{x^2-3x-2}\right)=0\)
\(\Leftrightarrow\frac{2x+4}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\frac{2x+4}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}=0\)
<=> \(\left(2x+4\right)\left(\frac{1}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\frac{1}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}\right)=0\)(1)
Vì \(\frac{1}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\frac{1}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}>0\)
nên pt(1) <=> \(2x+4=0\Leftrightarrow x=-2\)(tmđk)
Vậy x=-2
Em kiểm tra lại đề bài câu trên nhé
`\sqrt{2x+3}+\sqrt{x+1}=3x-2+2\sqrt{2x^2+5x+3}` (ĐK: `x>=-1)`
`<=>\sqrt{2x+3}+\sqrt{x+1}=3x-2+2\sqrt{2x+3}*\sqrt{x+1}`
`<=>\sqrt{2x+3}+\sqrt{x+1}=(2x+3)+2\sqrt{2x+3}*\sqrt{x+1}+(x+1)-6`
`<=>\sqrt{2x+3}+\sqrt{x+1}=(\sqrt{2x+3}+\sqrt{x+1})^2-6`
Đặt: `t=\sqrt{2x+3}+\sqrt{x+1}(t>=0)` ta được pt:
`t=t^2-6`
`<=>t^2-t-6=0`
`<=>(t-3)(t+2)=0`
`<=>t=3(tm)` hoặc `t=-2(L)`
Suy ra: `\sqrt{2x+3}+\sqrt{x+1}=3`
`<=>2x+3+2\sqrt{(2x+3)(x+1)}+x+1=9`
`<=>2\sqrt{2x^2+5x+3}=5-3x`
`<=>4(2x^2+5x+3)=(5-3x)^2=9x^2-30x+25`
`<=>8x^2+20x+12=9x^2-30x+25`
`<=>x^2-50x+13=0`
`<=>x=25-6\sqrt{17}(tm)` và `x=25+6\sqrt{17}(tm)`
Vậy: `...`