
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có: \(C=3-3^2+3^3-3^4+\cdots+3^{23}-3^{24}\)
\(=3\left(1-3+3^2-3^3+\cdots+3^{22}-3^{23}\right)\) ⋮3
Ta có: \(C=3-3^2+3^3-3^4+\cdots+3^{23}-3^{24}\)
\(=3\left(1-3\right)+3^3\left(1-3\right)+\cdots+3^{23}\left(1-3\right)\)
\(=3\cdot\left(-2\right)+3^3\cdot\left(-2\right)+\cdots+3^{23}\left(-2\right)\)
\(=-2\left(3+3^3+\cdots+3^{23}\right)\)
\(=-2\left\lbrack\left(3+3^3\right)+\left(3^5+3^7\right)+\cdots+\left(3^{21}+3^{23}\right)\right\rbrack\)
\(=-2\cdot\left\lbrack3\cdot\left(1+3^2\right)+3^5\left(1+3^2\right)+\cdots+3^{21}\left(1+3^2\right)\right\rbrack\)
\(=-2\cdot10\cdot\left(3+3^5+\cdots+3^{21}\right)=-20\cdot\left(3+3^5+\cdots+3^{21}\right)\) ⋮20
Ta có: \(C=3-3^2+3^3-3^4+\cdots+3^{23}-3^{24}\)
\(=\left(3-3^2+3^3\right)-\left(3^4-3^5+3^6\right)+\cdots-\left(3^{22}-3^{23}+3^{24}\right)\)
\(=3\left(1-3+3^2\right)-3^4\left(1-3+3^2\right)+\cdots+3^{22}\left(1-3+3^2\right)\)
\(=7\cdot\left(3-3^4+\cdots-3^{22}\right)\) ⋮7
Ta có: C⋮20
C⋮7
C⋮3
mà ƯCLN(20;3;7)=1
nên C⋮20*3*7
=>C⋮420

Ta có: \(C=3-3^2+3^3-3^4+\cdots+3^{23}-3^{24}\)
\(=3\left(1-3+3^2-3^3+\cdots+3^{22}-3^{23}\right)\) ⋮3
Ta có: \(C=3-3^2+3^3-3^4+\cdots+3^{23}-3^{24}\)
\(=3\left(1-3\right)+3^3\left(1-3\right)+\cdots+3^{23}\left(1-3\right)\)
\(=3\cdot\left(-2\right)+3^3\cdot\left(-2\right)+\cdots+3^{23}\left(-2\right)\)
\(=-2\left(3+3^3+\cdots+3^{23}\right)\)
\(=-2\left\lbrack\left(3+3^3\right)+\left(3^5+3^7\right)+\cdots+\left(3^{21}+3^{23}\right)\right\rbrack\)
\(=-2\cdot\left\lbrack3\cdot\left(1+3^2\right)+3^5\left(1+3^2\right)+\cdots+3^{21}\left(1+3^2\right)\right\rbrack\)
\(=-2\cdot10\cdot\left(3+3^5+\cdots+3^{21}\right)=-20\cdot\left(3+3^5+\cdots+3^{21}\right)\) ⋮20
Ta có: \(C=3-3^2+3^3-3^4+\cdots+3^{23}-3^{24}\)
\(=\left(3-3^2+3^3\right)-\left(3^4-3^5+3^6\right)+\cdots-\left(3^{22}-3^{23}+3^{24}\right)\)
\(=3\left(1-3+3^2\right)-3^4\left(1-3+3^2\right)+\cdots+3^{22}\left(1-3+3^2\right)\)
\(=7\cdot\left(3-3^4+\cdots-3^{22}\right)\) ⋮7
Ta có: C⋮20
C⋮7
C⋮3
mà ƯCLN(20;3;7)=1
nên C⋮20*3*7
=>C⋮420

a)92 : 33 = (32)2 : 33 = 34 : 33 = 3.
b) 52 . 252 = 52 . (52)2 = 52 . 54 = 56.
c) \(\left(\frac{1}{3}\right)^2\) . \(\left(\frac{1}{9.3}\right)^2\) = \(\frac{1^2}{3^2}\). \(\frac{1^2}{27^2}\)= \(\frac{1}{9}\).\(\frac{1}{729}\)= \(\frac{1}{2511}\)

TL :
= -1 - 1/6
= -7/6
HOK TỐT NHÉ^^^^^^^

\(\dfrac{2022-1}{3^2\cdot3^2}\)
\(=\dfrac{2021}{3^{2+2}}\)
\(=\dfrac{2021}{3^4}\)
\(=\dfrac{2021}{81}\)
Bạn nên gõ đề đầy đủ và bằng công thức toán để mọi người hỗ trợ tốt hơn.

\(-3+\frac{1}{1+\frac{1}{3+\frac{1}{1+\frac{1}{3}}}}\)
\(=-3+\frac{1}{1+\frac{1}{3+\frac{3}{4}}}\)
\(=-3+\frac{1}{1+\frac{4}{15}}\)
\(=-3+\frac{15}{19}\)
\(=-\frac{42}{19}\)
\(A=\)\(-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-...+\frac{1}{3^{50}}-\frac{1}{3^{51}}\)
\(3A=-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{49}}-\frac{1}{3^{50}}\)
\(4A=-1-\frac{1}{3^{51}}\)
\(A=\frac{-1-\frac{1}{3^{51}}}{4}\)
k cho mik nha