K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 4:

a: Ta có: \(AD=DC=\frac{AC}{2}\)

\(AE=EB=\frac{AB}{2}\)

mà AC=AB(ΔABC cân tại A)

nên AD=DC=AE=EB

Xét ΔADB và ΔAEC có

AD=AE
\(\hat{DAB}\) chung

AB=AC

Do đó: ΔADB=ΔAEC

=>DB=EC

Xét ΔABC có

DB,CE là các đường trung tuyến

DB cắt CE tại G

Do đó: G là trọng tâm của ΔABC

=>\(GB=\frac23BD;GC=\frac23CE\)

mà BD=CE

nên GB=GC

b: G là trọng tâm của ΔABC

=>GB=2GD; GC=2GE

Xét ΔGBC có GB+GC>BC

=>2(GD+GE)>BC

=>\(GD+GE>\frac{BC}{2}\)

8 tháng 5

ko biet

Bài 2:

Qua B, kẻ tia BD nằm giữa hai tia BA và BC sao cho BD//Ax//Cz

ta có: BD//Ax

=>\(\hat{xAB}+\hat{ABD}=180^0\) (hai góc trong cùng phía)

=>\(\hat{ABD}=180^0-125^0=55^0\)

Ta có: BD//Cz

=>\(\hat{DBC}+\hat{BCz}=180^0\) (hai góc trong cùng phía)

=>\(\hat{DBC}=180^0-130^0=50^0\)

Ta có: tia BD nằm giữa hai tia BA và BC

=>\(\hat{ABC}=\hat{DBA}+\hat{DBC}\)

=>\(\hat{ABC}=55^0+50^0=105^0\)

Bài 3:

Ax//yy'

=>\(\hat{xAB}=\hat{yBA}\) (hai góc so le trong)

=>\(\hat{yBA}=50^0\)

Cz//yy'

=>\(\hat{yBC}=\hat{zCB}\) (hai góc so le trong)

=>\(\hat{yBC}=40^0\)

Ta có: tia By nằm giữa hai tia BA và BC

=>\(\hat{ABC}=\hat{yBA}+\hat{yBC}=40^0+50^0=90^0\)

Bài 4:

Qua B, kẻ tia BD nằm giữa hai tia BA và BC sao cho BD//Ax//Cz

BD//Ax

=>\(\hat{xAB}+\hat{ABD}=180^0\) (hai góc trong cùng phía)

=>\(\hat{ABD}=180^0-110^0=70^0\)

ta có; tia BD nằm giữa hai tia BA và BC

=>\(\hat{DBA}+\hat{DBC}=\hat{ABC}\)

=>\(\hat{DBC}=100^0-70^0=30^0\)

Ta có: \(\hat{DBC}=\hat{zCB}\left(=30^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên BD//Cz

Ta có: BD//Ax

BD//Cz

Do đó: Ax//Cz



a: a//b

=>\(\hat{A_1}=\hat{B_3}\) (hai góc so le trong)

\(\hat{A_1}=65^0\)

nên \(\hat{B_3}=65^0\)

b: Ta có: \(\hat{B}_3+\hat{B_2}=180^0\) (hai góc kề bù)

=>\(\hat{B_2}=180^0-65^0=115^0\)

11 tháng 8

Giải:

a; \(\hat{A_1}\) = \(65^0\) (gt)

\(\hat{A_1}\) = \(\hat{A_3}\) = 65\(^0\)(đối đỉnh)

\(\hat{A_3}\) = \(\hat{B_3}\) = \(65^0\) (slt)

b; \(\hat{B_2}\) + \(\hat{B_3}\) = 180\(^0\) (hai góc kề bù)

\(\hat{B_2}\) = 180\(^0\) - \(\hat{B_3}\)

\(\hat{B_2}\) = 180\(^0\) - 65\(^0\) = 115\(^0\)

Vậy a; \(\hat{B}_3\) = 65\(^0\)

b; \(\hat{B_2}\) = 115\(^0\)







8 giờ trước (14:01)

a: Ta có: \(\hat{AOD}+\hat{BOD}=180^0\) (hai góc kề bù)

=>\(\hat{BOD}=180^0-97^0=83^0\)

Trên cùng một nửa mặt phẳng bờ chứa tia OA, ta có: \(\hat{AOE}<\hat{AOD}\left(56^0<97^0\right)\)

nên tia OE nằm giữa hai tia OA và OD

=>\(\hat{AOE}+\hat{EOD}=\hat{AOD}\)

=>\(\hat{EOD}=97^0-56^0=41^0\)

Ta có: \(\hat{AOE}+\hat{EOC}+\hat{COB}=180^0\)

=>\(\hat{EOC}=180^0-56^0-42^0=82^0\)

b: Trên cùng một nửa mặt phẳng bờ chứa tia OE, ta có; \(\hat{EOD}<\hat{EOC}\left(41^0<82^0\right)\)

nên tia OD nằm giữa hai tia OE và OC

=>\(\hat{EOD}+\hat{DOC}=\hat{EOC}\)

=>\(\hat{DOC}=82^0-41^0=41^0\)

Ta có: tia OD nằm giữa hai tia OE và OC

\(\hat{DOE}=\hat{DOC}\left(=41^0\right)\)

Do đó: OD là phân giác của góc EOC

2 giờ trước (20:45)

Ta có: \(x+120^0=180^0\) (hai góc kề bù)

=>\(x=180^0-120^0=60^0\)

Ta có: x=y (hai góc đối đỉnh)

\(x=60^0\)

nên \(y=60^0\)

Ta có: \(z+60^0=180^0\) (hai góc kề bù)

=>\(z=180^0-60^0=120^0\)

2 giờ trước (20:45)

x = 60\(^0\) (hai góc đồng vị)

x = y = 60\(^0\) (hai góc đối đỉnh)

z = 120\(^0\) (slt)

t = 60\(^0\) (hai góc đối đỉnh)



2 giờ trước (20:48)

1: Các cặp góc so le trong là \(\hat{A_4};\hat{B_2}\) ; \(\hat{A_3};\hat{B_1}\)

Các cặp góc đồng vị là \(\hat{A_1};\hat{B_1}\) ; \(\hat{A_2};\hat{B_2}\) ; \(\hat{A_4};\hat{B_4}\) ; \(\hat{A_3};\hat{B_3}\)

Các cặp góc trong cùng phía là: \(\hat{A_4};\hat{B_1}\) ; \(\hat{A_3};\hat{B_2}\)

2: Ta có: \(\hat{A_2}+\hat{A_3}=180^0\) (hai góc kề bù)

=>\(\hat{A_3}=180^0-60^0=120^0\)

Ta có: \(\hat{A_2}=\hat{A_4}\) (hai góc đối đỉnh)

\(\hat{A_2}=60^0\)

nên \(\hat{A_4}=60^0\)

Ta có: \(\hat{A_1}=\hat{A_3}\) (hai góc đối đỉnh)

\(\hat{A_3}=120^0\)

nên \(\hat{A_1}=120^0\)

Ta có: \(\hat{B_2}+\hat{B_3}=180^0\) (hai góc kề bù)

=>\(\hat{B_3}=180^0-60^0=120^0\)

ta có: \(\hat{B_1}=\hat{B_3}\) (hai góc đối đỉnh)

\(\hat{B_3}=120^0\)

nên \(\hat{B_1}=120^0\)

ta có: \(\hat{B_2}=\hat{B_4}\) (hai góc đối đỉnh)

\(\hat{B_2}=60^0\)

nên \(\hat{B_4}=60^0\)

2 giờ trước (20:56)

Gọi BM là tia đối của tia By

Ta có: \(\hat{ABy}+\hat{ABM}=180^0\) (hai góc kề bù)

=>\(\hat{ABM}=180^0-120^0=60^0\)

Ta có: tia BM nằm giữa hai tia BA và BC

=>\(\hat{ABM}+\hat{CBM}=\hat{ABC}\)

=>\(\hat{CBM}=90^0-60^0=30^0\)

Ta có: \(\hat{xAm}=\hat{ABM}\left(=60^0\right)\)

mà hai góc này là hai góc ở vị đồng vị

nên Ax//BM

=>Ax//By

Ta có: \(\hat{CBM}+\hat{BCz}=30^0+150^0=180^0\)

mà hai góc này là hai góc ở vị trí trong cùng phía

nên By//Cz

Ta có: Ax//By

By//Cz

Do đó: Ax//By//Cz

2 giờ trước (20:54)

Bài 4: Gọi BM là tia đối của tia Bb

Ta có: \(\hat{ABM}+\hat{ABb}=180^0\) (hai góc kề bù)

=>\(\hat{ABM}=180^0-120^0=60^0\)

Ta có: tia BM nằm giữa hai tia BA và BC

=>\(\hat{ABM}+\hat{CBM}=\hat{ABC}\)

=>\(\hat{CBM}=80^0-60^0=20^0\)

ta có: \(\hat{ABM}+\hat{A}=60^0+120^0=180^0\)

mà hai góc này là hai góc ở vị trí trong cùng phía

nên a//b

Ta có: \(\hat{CBM}+\hat{C}=20^0+160^0=180^0\)

mà hai góc này là hai góc ở vị trí trong cùng phía

nên b//c

Ta có: a//b

b//c

Do đó: a//c

Bài 3:

Ta có: \(\hat{A_1}=\hat{B_1}\left(=110^0\right)\)

mà hai góc này là hai góc ở vị trí đồng vị

nên a//b

Ta có: \(\hat{C_1}=\hat{C_2}\) (hai góc đối đỉnh)

\(\hat{C_2}=110^0\)

nên \(\hat{C_1}=110^0\)

ta có: \(\hat{C_1}=\hat{B_1}\left(=110^0\right)\)

mà hai góc này là hai góc ở vị trí đồng vị

nên b//c

Ta có: a//b

b//c

Do đó: a//c