loading...
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2023

a: \(VP=a^3+b^3+c^3-3bac\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=VT\)

b: \(VT=\left(3a+2b-1\right)\left(a+5\right)-2b\left(a-2\right)\)

\(=3a^2+15a+2ab+10b-a-5-2ab+4b\)

\(=3a^2+14a+14b-5\)

\(VP=\left(3a+5\right)\left(a+3\right)+2\left(7b-10\right)\)

\(=3a^2+9a+5a+15+14b-20\)

\(=3a^2+14a+14b-5\)

=>VT=VP

c: \(VT=a\left(b-x\right)+x\left(a+b\right)\)

\(=ab-ax+ax+bx\)

\(=ab+bx=b\left(a+x\right)=VP\)

d: \(VT=a\left(b-c\right)-b\left(a+c\right)+c\left(a-b\right)\)

\(=ab-ac-ab-bc+ca-cb\)

\(=-2bc\)

=VP

NV
10 tháng 3 2023

Đặt \(a=\dfrac{1}{x};b=\dfrac{1}{y};c=\dfrac{1}{z}\Rightarrow xyz=1\) và \(x;y;z>0\)

Gọi biểu thức cần tìm GTNN là P, ta có:

\(P=\dfrac{1}{\dfrac{1}{x^3}\left(\dfrac{1}{y}+\dfrac{1}{z}\right)}+\dfrac{1}{\dfrac{1}{y^3}\left(\dfrac{1}{z}+\dfrac{1}{x}\right)}+\dfrac{1}{\dfrac{1}{z^3}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)}\)

\(=\dfrac{x^3yz}{y+z}+\dfrac{y^3zx}{z+x}+\dfrac{z^3xy}{x+y}=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)

\(P\ge\dfrac{\left(x+y+z\right)^2}{y+z+z+x+x+y}=\dfrac{x+y+z}{2}\ge\dfrac{3\sqrt[3]{xyz}}{2}=\dfrac{3}{2}\)

\(P_{min}=\dfrac{3}{2}\) khi \(x=y=z=1\) hay \(a=b=c=1\)

22 tháng 3

Đặt \(a = \frac{1}{x} ; b = \frac{1}{y} ; c = \frac{1}{z} \Rightarrow x y z = 1\) và \(x ; y ; z > 0\)

Gọi biểu thức cần tìm GTNN là P, ta có:

\(P = \frac{1}{\frac{1}{x^{3}} \left(\right. \frac{1}{y} + \frac{1}{z} \left.\right)} + \frac{1}{\frac{1}{y^{3}} \left(\right. \frac{1}{z} + \frac{1}{x} \left.\right)} + \frac{1}{\frac{1}{z^{3}} \left(\right. \frac{1}{x} + \frac{1}{y} \left.\right)}\)

\(= \frac{x^{3} y z}{y + z} + \frac{y^{3} z x}{z + x} + \frac{z^{3} x y}{x + y} = \frac{x^{2}}{y + z} + \frac{y^{2}}{z + x} + \frac{z^{2}}{x + y}\)

\(P \geq \frac{\left(\left(\right. x + y + z \left.\right)\right)^{2}}{y + z + z + x + x + y} = \frac{x + y + z}{2} \geq \frac{3 \sqrt[3]{x y z}}{2} = \frac{3}{2}\)

\(P_{m i n} = \frac{3}{2}\) khi \(x = y = z = 1\) hay \(a = b = c = 1\)

19 tháng 12 2023

Ta có

\(BC\perp AB';B'C'\perp AB'\) => BC//B'C'

\(\Rightarrow\dfrac{AB}{AB'}=\dfrac{BC}{B'C'}\Rightarrow\dfrac{x}{x+h}=\dfrac{a}{a'}\)

\(\Rightarrow a'x=ax+ah\Rightarrow x\left(a'-a\right)=ah\Rightarrow x=\dfrac{ah}{a'-a}\left(dpcm\right)\)

30 tháng 9 2024

Xét tam giác ABCABC có BC⊥ AB′BC AB và B′C′⊥AB′BCAB nên suy ra BCBC // B′C′BC.

Theo hệ quả định lí Thalès, ta có: ABAB′ =BCBC′ABAB =BCBC

Suy ra xx+h =aa′x+hx =aa

a′.x=a(x+h)a.x=a(x+h)

a′.x−ax=aha.xax=ah

x(a′−a)=ahx(a

HQ
Hà Quang Minh
Giáo viên
10 tháng 9 2023

\({x^2} = {4^2} + {2^2} = 20 \Rightarrow x = 2\sqrt 5 \)

\({y^2} = {5^2} - {4^2} = 9 \Leftrightarrow y = 3\)

\({z^2} = {\left( {\sqrt 5 } \right)^2} + {\left( {2\sqrt 5 } \right)^2} = 25 \Rightarrow z = 5\)

\({t^2} = {1^2} + {2^2} = 5 \Rightarrow t = \sqrt 5 \)

4 giờ trước (18:11)

Bài 2:

a: ĐKXĐ: x∉{2;-2}

b: \(A=\frac{3x}{x-2}-\frac{2}{x+2}+\frac{2x-4}{x^2-4}\)

\(=\frac{3x}{x-2}-\frac{2}{x+2}+\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{3x}{x-2}-\frac{2}{x+2}+\frac{2}{x+2}=\frac{3x}{x-2}\)

c: Thay x=-5 vào A, ta được:

\(A=\frac{3\cdot\left(-5\right)}{-5-2}=\frac{-15}{-7}=\frac{15}{7}\)

d: Để A nguyên thì 3x⋮x-2

=>3x-6+6⋮x-2

=>6⋮x-2

=>x-2∈{1;-1;2;-2;3;-3;6-6}

=>x∈{1;2;4;0;5;-1;8;-4}

Kết hợp ĐKXĐ, ta được: x∈{1;4;0;5;-1;8;-4}

Bài 1:

a: \(A=x^2+10x+25\)

\(=x^2+2\cdot x\cdot5+5^2=\left(x+5\right)^2\)

b: \(B=x^2-y^2+8x-8y\)

=(x-y)(x+y)+8(x-y)

=(x-y)(x+y+8)

c: \(C=x^2+4x-5\)

\(=x^2+5x-x-5\)

=x(x+5)-(x+5)

=(x+5)(x-1)

Bài 2:

a: \(\left(-\frac13x^2y\right)\cdot2xy^3=\left(-\frac13\cdot2\right)\cdot x^2\cdot x\cdot y\cdot y^3=-\frac23x^3y^4\)

b: \(\left(-\frac34x^2y\right)\cdot\left(-xy\right)^3=\left(-\frac34\right)\cdot\left(-1\right)\cdot x^2\cdot x^3\cdot y\cdot y^3=\frac34x^5y^4\)

c: \(\frac35\cdot x^2y^5\cdot x^3y^2\cdot\frac{-2}{3}=\left(\frac35\cdot\frac{-2}{3}\right)\cdot x^2\cdot x^3\cdot y^5\cdot y^2=-\frac25x^5y^7\)

d: \(\left(\frac34x^2y^3\right)\cdot\left(2\frac25x^4\right)=\frac34x^2y^3\cdot\frac{12}{5}x^4=\frac34\cdot\frac{12}{5}\cdot x^2\cdot x^4\cdot y^3=\frac95x^6y^3\)

e: \(\left(\frac{12}{15}x^4y^5\right)\cdot\left(\frac59x^2y\right)=\frac45\cdot\frac59\cdot x^4\cdot x^2\cdot y^5\cdot y=\frac49x^6y^6\)

f: \(\left(-\frac17x^2y\right)\left(-\frac{14}{5}x^4y^5\right)=\frac17\cdot\frac{14}{5}\cdot x^2\cdot x^4\cdot y\cdot y^5=\frac25x^6y^6\)

Bài 1: Các đơn thức là \(x^2y;-13;\left(-2\right)^3xy^7\)

Từ đề bài, ta có hình vẽ sau:

\(\hat{BAC}=\hat{BAH}+\hat{CAH}=10^0+10^0=20^0\)

Xét ΔABC có

AH là đường cao

AH là đường phân giác

Do đó: ΔABC cân tại A

=>\(\hat{ABC}=\frac{180^0-\hat{BAC}}{2}=\frac{180^0-20^0}{2}=80^0\)

Ta có: \(\hat{KBC}+\hat{KBA}=\hat{ABC}\) (tia BK nằm giữa hai tia BA và BC)

=>\(\hat{KBA}=80^0-40^0=40^0\)

Xét ΔABG và ΔACG có

AB=AC

\(\hat{BAG}=\hat{CAG}\)

AG chung

Do đó: ΔABG=ΔACG

=>\(\hat{ABG}=\hat{ACG}\)

=>\(x=40^0\)

17 tháng 8

17 tháng 8