Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{2x}{5}+\frac{3-2x}{3}\ge\frac{3x+2}{2}\)
\(\Leftrightarrow\)\(\frac{12x}{30}+\frac{10\left(3-2x\right)}{30}\ge\frac{15\left(3x+2\right)}{30}\)
\(\Leftrightarrow\)12x + 30 - 20x \(\ge\) 45x + 30
\(\Leftrightarrow\) 12x - 20x - 45x \(\ge\) -30 + 30
\(\Leftrightarrow\)- 53x \(\ge\)0
\(\Leftrightarrow\)x \(\le\)0
Vậy bất phương trình có nghiệm là : x \(\le0\)
b) \(1-\frac{2x-5}{6}>\frac{3-x}{4}\)
\(\Leftrightarrow\)\(\frac{12}{12}-\frac{2\left(2x-5\right)}{12}>\frac{3\left(3-x\right)}{12}\)
\(\Leftrightarrow\) 12 - 4x + 10 > 9 - 3x
\(\Leftrightarrow\)-4x + 3x > -12 - 10 + 9
\(\Leftrightarrow\)-x > -13
\(\Leftrightarrow\)x < 13
Vậy bất phương trình có nghiệm là : x < 13

1)
a) \(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}< =>\frac{2\left(x+5\right)}{2\left(3x-6\right)}-\frac{3x-6}{2\left(3x-6\right)}=\frac{3\left(2x-3\right)}{3\left(2x-4\right)}.\)
(đk:x khác \(\frac{1}{2}\))
\(\frac{2x+10}{6x-12}-\frac{3x-6}{6x-12}=\frac{6x-9}{6x-12}< =>2x+10-3x+6=6x-9< =>x=\frac{25}{7}\)
Vậy x=\(\frac{25}{7}\)
b) /7-2x/=x-3 \(x\ge\frac{7}{2}\)
(đk \(x\ge3,\frac{7}{2}< =>x\ge\frac{7}{2}\))
\(\Rightarrow\orbr{\begin{cases}7-2x=x-3\\7-2x=-\left(x-3\right)\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{10}{3}\left(< \frac{7}{2}\Rightarrow l\right)\\x=4\left(tm\right)\end{cases}}}\)
Vậy x=4
2)
\(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}>\frac{x-4}{5}+\frac{x-5}{6}\)
\(\Leftrightarrow\frac{30\left(x-1\right)}{60}+\frac{20\left(x-2\right)}{60}+\frac{15\left(x-3\right)}{60}-\frac{12\left(x-4\right)}{60}-\frac{10\left(x-5\right)}{60}>0\)
\(\Leftrightarrow30x-30+20x-40+15x-45-12x+48-10x+50>0\Leftrightarrow43x-17>0\Leftrightarrow x>\frac{17}{43}\)

Bàii làm
a) ( x - 2 )( x - 3 ) = x2 - 4
<=> x2 - 2x - 3x + 6 = x2 - 4
<=> x2 - x2 - 5x + 6 - 4 = 0
<=> -5x + 2 = 0
<=> -5x = -2
<=> x = 2/5
Vậy x = 2/5 là nghiệm phương trình.
b) \(\frac{x+2}{x-2}-\frac{1}{x}=\frac{x+6}{x\left(x-2\right)}\)
=> x( x + 2 ) - ( x - 2 ) = x + 6
<=> x2 + 2x - x + 2 - x - 6 = 0
<=> x2 - 4 = 0
<=> x2 = 4
<=> x = + 4
Vậy nghiệm S = { + 4 }
c) \(\frac{2x-1}{-3}>1\)
\(\Leftrightarrow\frac{2x-1}{-3}.\left(-3\right)< 1\left(-3\right)\)
\(\Leftrightarrow2x-1< -3\)
\(\Leftrightarrow2x< -2\)
\(\Leftrightarrow x< -1\)
Vậy nghiệm bất phương trình S = { x / x < -1 }
d) ( x - 1 )2 < 5 - 2x
<=> x2 - 2x + 1 < 5 - 2x
<=> x2 - 2x + 1 - 5 + 2x < 0
<=> x2 - 4 < 0
<=> x2 < 4
<=> x < + 2
Vậy tập nghiệm S = { x / x < +2 }


a, \(1-\frac{2x-1}{9}=3-\frac{3x-3}{12}\)
\(\Leftrightarrow\frac{108-12\cdot\left(2x-1\right)}{108}=\frac{108\cdot3-9\cdot\left(3x-3\right)}{108}\)
\(\Rightarrow108-12\cdot\left(x-1\right)=108\cdot3-9\cdot\left(3x-3\right)\)
\(\Leftrightarrow108-24x+12=324-27x+27\)
\(\Leftrightarrow3x=231\)
\(\Rightarrow x=77\)
c,\(\frac{3}{4x-20}+\frac{15}{50-2x^2}+\frac{7}{6x+30}=0\)
\(\Rightarrow3\cdot\left(50-2x^2\right)\cdot\left(6x+30\right)+15\cdot\left(4x-20\right)\cdot\left(6x+30\right)+7\cdot\left(4x-20\right)\cdot\left(50-2x^2\right)=0\)
\(\Leftrightarrow900x+4500-36x^3-180x^2+360x^2+1800x-1800x-9000+1400x-56x^3-7000+280x^2=0\)
\(\Leftrightarrow-92x^3+460x^2+2300x-11500=0\)
\(\Leftrightarrow92x^3-460x^2-2300x+11500=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-5\\x=5\end{cases}}\)
a) Thay x = 3 vào bất phương trình ta được: 2.3 + 3 < 9 <=> 9 < 9 (khẳng định sai)
Vậy x = 3 không là nghiệm của bất phương trình2x + 3 < 9
b) Thay x = 3 vào bất phương trình ta có: -4.3 > 2.3 + 5 => -12 > 11 (khẳng định sai)
Vậy x = 3 không là nghiệm của bất phương trình -4x > 2x + 5
c) Thay x = 3 vào bất phương trình ta có: 5 - 3 > 3.3 -12 => 2 > -3 (khẳng định đúng)
Vậy x = 3 là nghiệm của bất phương trình 5 - x > 3x - 12

Câu 1a : tự kết luận nhé
\(2\left(x+3\right)=5x-4\Leftrightarrow2x+6=5x-4\Leftrightarrow-3x=-10\Leftrightarrow x=\frac{10}{3}\)
Câu 1b : \(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)ĐK : \(x\ne\pm3\)
\(\Leftrightarrow x+3-2x+6=5-2x\Leftrightarrow-x+9=5-2x\Leftrightarrow x=-4\)
c, \(\frac{x+1}{2}\ge\frac{2x-2}{3}\Leftrightarrow\frac{x+1}{2}-\frac{2x-2}{3}\ge0\)
\(\Leftrightarrow\frac{3x+3-4x+8}{6}\ge0\Rightarrow-x+11\ge0\Leftrightarrow x\le11\)vì 6 >= 0
1) 2(x + 3) = 5x - 4
<=> 2x + 6 = 5x - 4
<=> 3x = 10
<=> x = 10/3
Vậy x = 10/3 là nghiệm phương trình
b) ĐKXĐ : \(x\ne\pm3\)
\(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)
=> \(\frac{x+3-2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{5-2x}{\left(x-3\right)\left(x+3\right)}\)
=> x + 3 - 2(x - 3) = 5 - 2x
<=> -x + 9 = 5 - 2x
<=> x = -4 (tm)
Vậy x = -4 là nghiệm phương trình
c) \(\frac{x+1}{2}\ge\frac{2x-2}{3}\)
<=> \(6.\frac{x+1}{2}\ge6.\frac{2x-2}{3}\)
<=> 3(x + 1) \(\ge\)2(2x - 2)
<=> 3x + 3 \(\ge\)4x - 4
<=> 7 \(\ge\)x
<=> x \(\le7\)
Vậy x \(\le\)7 là nghiệm của bất phương trình
Biểu diễn
-----------------------|-----------]|-/-/-/-/-/-/>
0 7

\(\text{a) }\frac{6}{x-4}-\frac{x}{x+2}=\frac{6}{x-4}.\frac{x}{x+2}\)
\(ĐKXĐ:x\ne-2;x\ne4\)
\(MTC:\left(x-4\right)\left(x+2\right)\)
\(\Leftrightarrow\frac{6\left(x+2\right)}{\left(x-4\right)\left(x+2\right)}-\frac{x\left(x-4\right)}{\left(x-4\right)\left(x+2\right)}=\frac{6x}{\left(x-4\right)\left(x+2\right)}\)
\(\Rightarrow6\left(x+2\right)-x\left(x-4\right)=6x\)
\(\Leftrightarrow6x+12-x^2+4x=6x\)
\(\Leftrightarrow6x+12-x^2+4x-6x=0\)
\(\Leftrightarrow-x^2+4x+12=0\)
\(\Leftrightarrow-\left(x^2-4x-12\right)=0\)
\(\Leftrightarrow x^2-4x-12=0\)
\(\Leftrightarrow x^2+2x-6x-12=0\)
\(\Leftrightarrow x\left(x+2\right)-6\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-6\right)=0\)
\(\Leftrightarrow x=-2\left(\text{loại}\right)\text{ hoặc }x=6\left(\text{nhận}\right)\)
Vậy \(S=\left\{6\right\}\)
\(\text{b) }\frac{2x+3}{2x-1}=\frac{x-3}{x+5}\)
\(ĐKXĐ:x\ne\frac{1}{2};x\ne-5\)
\(\Leftrightarrow\left(2x+3\right)\left(x+5\right)=\left(2x-1\right)\left(x-3\right)\left[\text{Tỉ lệ thức}\right]\)
\(\Leftrightarrow2x^2+10x+3x+15=2x^2-6x-x+3\)
\(\Leftrightarrow2x^2+13x+15=2x^2-7x+3\)
\(\Leftrightarrow2x^2+13x-2x^2+7x=3-15\)
\(\Leftrightarrow20x=-12\)
\(\Leftrightarrow x=\frac{-12}{20}=\frac{-3}{5}\)
Vậy \(S=\left\{\frac{-3}{5}\right\}\)
Đặt \(y=x^2-2x+3=\left(x-1\right)^2+2\ge2\), ta có:
\(x^2-2x+3=\frac{6}{x^2-2x+4}\Leftrightarrow y=\frac{6}{y+1}\Leftrightarrow y\left(y+1\right)=6\Leftrightarrow y^2+y-6=0\)
\(\Leftrightarrow\left(y+3\right)\left(y-2\right)=0\Leftrightarrow\orbr{\begin{cases}y=2\\y=-3\end{cases}\Rightarrow y=2\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1}\)
Vậy \(S=\left\{1\right\}\)