
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) \(x^2-7x-5=0\)
\(\Leftrightarrow x^2-2.x.\frac{7}{2}+\frac{49}{4}-\frac{49}{4}-5=0\)
\(\Leftrightarrow\left(x-\frac{7}{2}\right)^2-\frac{69}{4}=0\)
\(\Leftrightarrow\left(x-\frac{7}{2}-\frac{\sqrt{69}}{2}\right)\left(x-\frac{7}{2}+\frac{\sqrt{69}}{2}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{7}{2}-\frac{\sqrt{69}}{2}=0\\x-\frac{7}{2}+\frac{\sqrt{69}}{2}=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=\frac{7+\sqrt{69}}{2}\\x=\frac{7-\sqrt{69}}{2}\end{cases}}\)
Vậy tập hợp nghiệm\(S=\left\{\frac{7+\sqrt{69}}{2};\frac{7-\sqrt{69}}{2}\right\}\)
b) \(3x^2-5x-8=0\)
\(\Leftrightarrow3x^2+3x-8x-8=0\)
\(\Leftrightarrow3x\left(x+1\right)-8\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x-8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\3x-8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{8}{3}\end{cases}}}\)
Vậy tập hợp nghiệm \(S=\left\{-1;\frac{8}{3}\right\}\)


a,\(x^2-7x+\sqrt{x^2-7x+8}=12\)
ĐKXĐ: .....
Đặt \(x^2-7x=t\)
Phương trình trở thành
\(t+\sqrt{t+8}=12\)
\(\Leftrightarrow\sqrt{t+8}=12-t\)
\(\Leftrightarrow t+8=\left(12-t\right)^2\)
\(\Leftrightarrow t+8=144-24t+t^2\)
\(\Leftrightarrow t^2-25t+136=0\)
\(\Leftrightarrow\left(t-17\right)\left(t-8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t-17=0\\t-8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}t=17\\t=8\end{cases}}}\)
tại t = 17 , ta có
\(x^2-7x=17\Leftrightarrow x^2-7x-17=0\)
\(\Leftrightarrow.......\)
Tại t = 8 ta có
\(x^2-7x=8\Leftrightarrow x^2-7x-8=0\)
\(\Leftrightarrow\left(x-8\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-8=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=8\\x=-1\end{cases}}}\)
b, \(x^2+4x+5=2\sqrt{2x+3}\)
mik ko bt :)
a,đkxđ:\(x^2-7x+8\ge0\Leftrightarrow x^2-2\cdot\frac{7}{2}x+\frac{49}{4}-\frac{17}{4}\ge0\Leftrightarrow\left(x-\frac{7}{2}\right)^2\ge\frac{17}{4}\Leftrightarrow\hept{\begin{cases}x-\frac{7}{2}\ge\frac{\sqrt{17}}{2}\approx2,06\\x-\frac{7}{2}\le-\frac{\sqrt{17}}{2}\approx-2,06\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge5,56\\x\le1,44\end{cases}}\)
\(\Leftrightarrow\left(x^2-7x+8\right)+\sqrt{x^2-7x+8}=12+8=20\)
\(\Leftrightarrow4\left(x^2-7x+8\right)+4\sqrt{x^2-7x+8}+1=20\cdot4+1=81\)
\(\Leftrightarrow\left(2\sqrt{x^2-7x+8}+1\right)^2=81\)
\(\Leftrightarrow2\sqrt{x^2-7x+8}+1=\pm9\)
Mà vế trái >0 nên \(2\sqrt{x^2-7x+8}+1=9\)
\(\Leftrightarrow\sqrt{x^2-7x+8}=\frac{9-1}{2}=4\)
\(\Leftrightarrow x^2-7x+8=16\)
\(\Leftrightarrow x^2-7x-8=0\Leftrightarrow\left(x-8\right)\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=8\\x=-1\end{cases}}\)

x2-7x-8=0
<=> x2-8x+x-8=0
<=> x(x-8)+(x-8)=0
<=> (x-8)(x+1)=0
\(\Leftrightarrow\orbr{\begin{cases}x-8=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=8\\x=-1\end{cases}}}\)

\(ĐK:x\ge-\frac{3}{2}\)
Ta có:
\(x^2+5x+8=3\sqrt{2x^3+5x^2+7x+6}\)
\(\Leftrightarrow\left(x^2+x+2\right)+2\left(2x+3\right)=3\sqrt{2x^3+5x^2+7x+6}\)
\(\Leftrightarrow\left(x^2+x+2\right)+2\left(2x+3\right)=3\sqrt{\left(x^2+x+2\right)\left(2x+3\right)}\)
Đặt \(\sqrt{x^2+x+2}=a;\sqrt{2x+3}=b\)
Khi đó: \(a^2+2b^2=3ab\Leftrightarrow\left(a-b\right)\left(a-2b\right)=0\)
\(\Leftrightarrow\sqrt{x^2+x+2}=\sqrt{2x+3}\left(hoac\right)\sqrt{x^2+x+2}=2\sqrt{2x+3}\)
Với \(\sqrt{x^2+x+2}=\sqrt{2x+3}\Rightarrow x^2+x+2=2x+3\Leftrightarrow x^2-x-1=0\Leftrightarrow x=\frac{1+\sqrt{5}}{2};x=\frac{1-\sqrt{5}}{2}\)Tự đối chiếu điều kiện xác định -,-
\(\sqrt{x^2+x+2}=2\sqrt{2x+3}\Rightarrow x^2+x+2=4\left(2x+3\right)\Leftrightarrow x^2-7x-10=0\)
Tới đây bí rồi huhu
bình phương hai vế rồi rút gọn, phân tích thành nhân tử
\(\left(x+1\right)\left(x^3-9x^2+7x+10\right)=0\)0


Đặt \(\sqrt{x^2+7x+8}=a\) thì ta có
\(a^2+a-20=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=-5\left(l\right)\\a=4\end{cases}}\)
\(\Leftrightarrow\sqrt{x^2+7x+8}=4\)
\(\Leftrightarrow x^2+7x-8=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-8\\x=1\end{cases}}\)
\(x^2+7x+\sqrt{x^2+7x+8}=12\)
ĐK : \(x^2+7x+8\ge0\Leftrightarrow\orbr{\begin{cases}x\le\frac{-7-\sqrt{17}}{2}\\x\ge\frac{-7+\sqrt{17}}{2}\end{cases}}\)
Đặt \(t=x^2+7x\)
pt \(\Leftrightarrow t+\sqrt{t+8}=12\)
\(\Leftrightarrow\sqrt{t+8}=12-t\)( \(-8\le t\le12\))
Bình phương hai vế
\(\Leftrightarrow t+8=144-24t+t^2\)
\(\Leftrightarrow t^2-24t+144-t-8=0\)
\(\Leftrightarrow t^2-25t+136=0\)(*)
\(\Delta=b^2-4ac=\left(-25\right)^2-4\cdot136=625-544=81\)
\(\Delta>0\)nên (*) có hai nghiệm phân biệt
\(\hept{\begin{cases}t_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{25+\sqrt{81}}{2}=\frac{34}{2}=17\left(loai\right)\\t_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{25-\sqrt{81}}{2}=\frac{16}{2}=8\left(nhan\right)\end{cases}}\)
\(\Rightarrow x^2+7x=8\)
\(\Rightarrow x^2+7x-8=0\)
\(\Rightarrow x^2-x+8x-8=0\)
\(\Rightarrow x\left(x-1\right)+8\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x+8\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=-8\end{cases}\left(tm\right)}\)
Vậy phương trình có hai nghiệm \(\hept{\begin{cases}x_1=1\\x_2=-8\end{cases}}\)

Các bạn học sinh ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math không thể áp dụng các biện pháp như trừ điểm, thậm chí mở vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần

a: =>x(7x-5)=0
=>x=0 hoặc x=5/7
b: \(\Leftrightarrow\sqrt{2}x^2-6x=0\)
\(\Leftrightarrow x\left(\sqrt{2}x-6\right)=0\)
hay \(x\in\left\{0;3\sqrt{2}\right\}\)
c: =>x(3,4x+8,2)=0
=>x=0 hoặc x=-82/34=-41/17
d: \(\Leftrightarrow x\left(\dfrac{2}{5}x+\dfrac{7}{3}\right)=0\)
=>x=0 hoặc x=-35/6