
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


cậu cứ nhân 5 vào phương trình (2)
cộng 2 phương trình lại cậu sẽ ra được x+y-1=2
thế cái vừa tìm được vào 1 trong 2 phương trình thi sẽ ra thêm một phương trình 2x-y=-13
giải hệ rồi tìm được x và y

\(\left\{{}\begin{matrix}\left(x-5\right)\left(y-2\right)=\left(x+2\right)\left(y-1\right)\\\left(x-4\right)\left(y+7\right)=\left(x-3\right)\left(y+4\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy-2x-5y+10=xy-x+2y-2\\xy+7x-4y-28=xy+4x-3y-12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+7y=12\\3x-y=16\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x+21y=36\\3x-y=16\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}22y=20\\x+7y=12\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{62}{11}\\y=\dfrac{10}{11}\end{matrix}\right.\)

h) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=2\\\dfrac{3}{x}-\dfrac{4}{y}=-1\end{matrix}\right.\)\(\left(1\right)\)\(\left(đk:x,y\ne0\right)\)
Đặt \(a=\dfrac{1}{x},b=\dfrac{1}{y}\)
\(\left(1\right)\Leftrightarrow\) \(\left\{{}\begin{matrix}a+b=2\\3a-4b=-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3a+3b=6\\3a-4b=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=2\\7b=7\end{matrix}\right.\)\(\Leftrightarrow a=b=1\)
Thay a,b:
\(\Leftrightarrow\dfrac{1}{x}=\dfrac{1}{y}=1\Leftrightarrow x=y=1\left(tm\right)\)

a) \(\hept{\begin{cases}\left(x-y\right)^2=\left(5-2xy\right)^2\\\left(x+y\right)^2-2xy+xy=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-4xy=25+4x^2y^2-20xy\\\left(x+y\right)^2-xy=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2=25+4x^2y^2-16xy\\\left(x+y\right)^2=7+xy\end{cases}}\)
\(\Rightarrow25+4x^2y^2-16xy=7+xy\)
\(\Leftrightarrow4x^2y^2-17xy+18=0\)
\(\Leftrightarrow xy=\frac{9}{4}\) hoặc \(xy=2\)
Từ đó tính đc x+y dễ dàng tìm được các giá trị x và y
b) Câu hỏi của Huỳnh Minh Nghĩa - Toán lớp 9 - Học toán với OnlineMath

ĐKXĐ: \(x+5\ge0\Leftrightarrow x\ge-5\)
\(\hept{\begin{cases}2\sqrt{x+5}-3\left(x+y\right)=1\\3\sqrt{x+5}+\left(x+y\right)=7\end{cases}}\Leftrightarrow\hept{\begin{cases}2\sqrt{x+5}-3\left(x+y\right)=1\\9\sqrt{x+5}+3\left(x+y\right)=21\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}11\sqrt{x+5}=22\\3\sqrt{x+5}+\left(x+y\right)=7\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x+5}=2\\3\sqrt{x+5}+\left(x+y\right)=7\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x+5=4\\3\sqrt{x+5}+\left(x+y\right)=7\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\3\sqrt{-1+5}+\left(-1+y\right)=7\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=-1\\3.2-1+y=7\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\5+y=7\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
Vậy hệ phương trình có 1 nghiệm là (x;y) = (-1;2)