
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


ĐKXĐ: \(2x-x^2\ge0\)
=>\(x^2-2x\le0\)
=>x(x-2)<=0
=>0<=x<=2
0<=x<=2 nên 0>=-x>=-2
=>0>=-x+1>=-2+1
=>0>=-x+1>=-1
\(y=\sqrt{2x-x^2}-x\)
=>\(y^{\prime}=\frac{\left(2x-x^2\right)^{\prime}}{2\cdot\sqrt{2x-x^2}}-1=\frac{2-2x}{2\cdot\sqrt{2x-x^2}}-1=\frac{1-x}{\sqrt{2x-x^2}}-1\)
Đặt y'<0
=>\(\frac{1-x}{\sqrt{2x-x^2}}-1<0\) (1)
=>\(\frac{1-x}{\sqrt{2x-x^2}}<1\)
TH1: 1-x<0
=>x>1
=>1<x<=2
Khi đó, ta sẽ có:\(\frac{1-x}{\sqrt{2x-x^2}}<0\) <1
=>(1) luôn đúng với mọi x>1
Kết hợp ĐKXĐ, ta được: 1<x<=2(2)
TH2: 1-x>=0
=>x<=1
(1) sẽ tương đương với: \(\frac{\left(1-x\right)^2}{2x-x^2}<1\)
=>\(\left(1-x\right)^2<2x-x^2\)
=>\(x^2-2x+1-2x+x^2\le0\)
=>\(2x^2-4x+1\le0\)
=>\(x^2-2x+\frac12\le0\)
=>\(x^2-2x+1-\frac12\le0\)
=>\(\left(x-1\right)^2\le\frac12\)
=>\(-\frac{\sqrt2}{2}\le x-1\le\frac{\sqrt2}{2}\)
=>\(\frac{-\sqrt2+2}{2}\le x\le\frac{\sqrt2+2}{2}\)
Kết hợp ĐKXĐ, ta được: \(\frac{-\sqrt2+2}{2}\le x\le\frac{\sqrt2+2}{2}\)
=>0,29<x<1,71(3)
Từ (2),(3) suy ra Hàm số nghịch biến trên khoảng (1;2)
=>Chọn C

ĐKXĐ: \(2x-x^2\ge0\)
=>\(x^2-2x\le0\)
=>x(x-2)<=0
=>0<=x<=2
0<=x<=2 nên 0>=-x>=-2
=>0>=-x+1>=-2+1
=>0>=-x+1>=-1
\(y=\sqrt{2x-x^2}-x\)
=>\(y^{\prime}=\frac{\left(2x-x^2\right)^{\prime}}{2\cdot\sqrt{2x-x^2}}-1=\frac{2-2x}{2\cdot\sqrt{2x-x^2}}-1=\frac{1-x}{\sqrt{2x-x^2}}-1\)
Đặt y'<0
=>\(\frac{1-x}{\sqrt{2x-x^2}}-1<0\) (1)
=>\(\frac{1-x}{\sqrt{2x-x^2}}<1\)
TH1: 1-x<0
=>x>1
=>1<x<=2
Khi đó, ta sẽ có:\(\frac{1-x}{\sqrt{2x-x^2}}<0\) <1
=>(1) luôn đúng với mọi x>1
Kết hợp ĐKXĐ, ta được: 1<x<=2(2)
TH2: 1-x>=0
=>x<=1
(1) sẽ tương đương với: \(\frac{\left(1-x\right)^2}{2x-x^2}<1\)
=>\(\left(1-x\right)^2<2x-x^2\)
=>\(x^2-2x+1-2x+x^2\le0\)
=>\(2x^2-4x+1\le0\)
=>\(x^2-2x+\frac12\le0\)
=>\(x^2-2x+1-\frac12\le0\)
=>\(\left(x-1\right)^2\le\frac12\)
=>\(-\frac{\sqrt2}{2}\le x-1\le\frac{\sqrt2}{2}\)
=>\(\frac{-\sqrt2+2}{2}\le x\le\frac{\sqrt2+2}{2}\)
Kết hợp ĐKXĐ, ta được: \(\frac{-\sqrt2+2}{2}\le x\le\frac{\sqrt2+2}{2}\)
=>0,29<x<1,71(3)
Từ (2),(3) suy ra Hàm số nghịch biến trên khoảng (1;2)
=>Chọn C



Mình nhìn rõ biểu thức trong ảnh là:
$$
V = \sqrt[3]{\,(x^2 - 4)^2\,}.
$$
---
### Phân tích:
* Đây là căn bậc 3 của $(x^2 - 4)^2$.
* Vì căn bậc 3 **luôn xác định với mọi số thực**, nên biểu thức có **tập xác định** là $\mathbb{R}$ (tất cả số thực).
---
### Biến đổi đơn giản hơn:
$$
V = \sqrt[3]{(x^2 - 4)^2} = \big|x^2 - 4\big|^{\tfrac{2}{3}}.
$$
---
✅ Kết luận:
* Tập xác định: $D = \mathbb{R}$.
* Dạng đơn giản: $V = |x^2 - 4|^{2/3}$.


c: \(y=-x^2+2x+3\)
=>\(y^{\prime}=-2x+2\)
Đặt y'<0
=>-2x+2<0
=>-2x<-2
=>x>1
=>Hàm số nghịch biến trên (1;+∞)
Đặt y'>0
=>-2x+2>0
=>-2x>-2
=>x<1
=>Hàm số đồng biến trên (-∞;1)
d: \(y=\frac13x^3+3x^2+5x+2\)
=>\(y^{\prime}=\frac13\cdot3x^2+3\cdot2x+5=x^2+6x+5=\left(x+1\right)\left(x+5\right)\)
Đặt y'>0
=>(x+1)(x+5)>0
=>\(\left[\begin{array}{l}x>-1\\ x<-5\end{array}\right.\)
=>Hàm số đồng biến trên các khoảng (-1;+∞) và (-∞;-5)
Đặt y'<0
=>(x+1)(x+5)<0
=>-5<x<-1
=>Hàm số nghịch biến trên khoảng (-5;-1)
Ta có \(\sqrt{2+2\cos2x}=\sqrt{2+2\left(2\cos^2x-1\right)}=\sqrt{4\cos^2x}=2\left|\cos x\right|\)
\(\Leftrightarrow f\left(x\right)+f\left(-x\right)=2\left|\cos x\right|,\forall x\inℝ\) (1)
Đặt \(g\left(x\right)=f\left(x\right)-\left|\cos x\right|\)
Khi đó (1) \(\Leftrightarrow\left[f\left(x\right)-\left|\cos x\right|\right]+\left[f\left(-x\right)-\left|\cos x\right|\right]=0\)
\(\Leftrightarrow g\left(x\right)+\left[f\left(-x\right)-\left|\cos\left(-x\right)\right|\right]=0\) (do \(\cos x\) là hàm chẵn)
\(\Leftrightarrow g\left(x\right)+g\left(-x\right)=0\)
\(\Leftrightarrow g\left(x\right)=-g\left(-x\right)\)
\(\Leftrightarrow g\left(x\right)\) là hàm lẻ
Khi đó \(f\left(x\right)=g\left(x\right)+\left|\cos x\right|\) với \(g\left(x\right)\) là hàm lẻ. Thử lại, ta thấy:
(1) \(\Leftrightarrow f\left(x\right)+f\left(-x\right)=g\left(x\right)+\left|\cos x\right|+g\left(-x\right)+\left|\cos\left(-x\right)\right|\)
\(\Leftrightarrow f\left(x\right)+f\left(-x\right)=2\left|\cos x\right|\), thỏa mãn
Vậy \(f\left(x\right)=g\left(x\right)+\left|\cos x\right|\) với \(g\left(x\right)\) là hàm lẻ bất kì có tập xác định là \(ℝ\)
\(\Rightarrow I=\int\limits^{\dfrac{3\pi}{2}}_{-\dfrac{3\pi}{2}}f\left(x\right)dx\)
\(I=\int\limits^{\dfrac{3\pi}{2}}_{-\dfrac{3\pi}{2}}\left[g\left(x\right)+\left|\cos x\right|\right]dx\)
\(I=\int\limits^{\dfrac{3\pi}{2}}_{-\dfrac{3\pi}{2}}g\left(x\right)dx+\int\limits^{\dfrac{3\pi}{2}}_{-\dfrac{3\pi}{2}}\left|\cos x\right|dx\)
\(I=\int\limits^{\dfrac{3\pi}{2}}_{-\dfrac{3\pi}{2}}\left|\cos x\right|dx\) (do \(g\left(x\right)\) là hàm lẻ)
\(I=\int\limits^{-\dfrac{\pi}{2}}_{-\dfrac{3\pi}{2}}\left(-\cos x\right)dx+\int\limits^{\dfrac{\pi}{2}}_{-\dfrac{\pi}{2}}\cos xdx+\int\limits^{\dfrac{3\pi}{2}}_{\dfrac{\pi}{2}}\left(-\cos x\right)dx\)
\(I=-\sin x|^{-\dfrac{\pi}{2}}_{-\dfrac{3\pi}{2}}+\sin x|^{\dfrac{\pi}{2}}_{-\dfrac{\pi}{2}}-\sin x|^{\dfrac{3\pi}{2}}_{\dfrac{\pi}{2}}\)
\(I=6\)