Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Lời giải:
Từ PT$(1)\Rightarrow x=m+1-my$. Thay vô PT(2):
$m(m+1-my)+y=3m-1$
$\Leftrightarrow y(1-m^2)+m^2+m=3m-1$
$\Leftrightarrow y(1-m^2)=-m^2+2m-1(*)$
Để hpt có nghiệm $(x,y)$ duy nhất thì pt $(*)$ cũng phải có nghiệm $y$ duy nhất
Điều này xảy ra khi $1-m^2\neq 0\Leftrightarrow m\neq \pm 1$
Khi đó: $y=\frac{-m^2+2m-1}{1-m^2}=\frac{-(m-1)^2}{-(m-1)(m+1)}=\frac{m-1}{m+1}$
$x=m+1-my=m+1-\frac{m(m-1)}{m+1}=\frac{3m+1}{m+1}$
Có:
$x+y=\frac{m-1}{m+1}+\frac{3m+1}{m+1}=\frac{4m}{m+1}<0$
$\Leftrightarrow -1< m< 0$
Kết hợp với đk $m\neq \pm 1$ suy ra $-1< m< 0$ thì thỏa đề.

Ta có: \(\begin{cases}x+y=5\\ 2x-3y=5m-10\end{cases}\Rightarrow\begin{cases}2x+2y=10\\ 2x-3y=5m-10\end{cases}\)
=>\(\begin{cases}2x+2y-2x+3y=10-5m+10=-5m+20\\ x+y=5\end{cases}\)
=>\(\begin{cases}5y=-5m+20\\ x=5-y\end{cases}\Rightarrow\begin{cases}y=-m+4\\ x=5-\left(-m+4\right)=5+m-4=m+1\end{cases}\)
\(2x^2-y^2\)
\(=2\left(m+1\right)^2-\left(-m+4\right)^2\)
\(=2\left(m^2+2m+1\right)-\left(m^2-8m+16\right)\)
\(=2m^2+4m+2-m^2+8m-16=m^2+12m-14\)
\(=m^2+12m+36-50=\left(m+6\right)^2-50\ge-50\forall m\)
Dấu '=' xảy ra khi m+6=0
=>m=-6

\(\left\{{}\begin{matrix}3x+2y=10\\2x-y=m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x+2y=10\\4x-2y=2m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=10+2m\\3x+2y=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10+2m}{7}\\3\left(\dfrac{10+2m}{7}\right)+2y=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10+2m}{7}\\\dfrac{30+6m}{7}+2y=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10+2m}{7}\\y=\dfrac{40-6m}{14}\end{matrix}\right.\)
Để \(x>0\) \(\Leftrightarrow\dfrac{10+2m}{7}>0\)
\(\Leftrightarrow m>-5\) (1)
Để \(y>0\) \(\Leftrightarrow40-6m< 0\)
\(\Leftrightarrow m>\dfrac{20}{3}\) (2)
\(\left(1\right);\left(2\right)\rightarrow m>\dfrac{20}{3}\)
Vậy \(m>\dfrac{20}{3}\) thì \(x>0;y< 0\)