\(\cos^212\)+\(\cot60\)+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2019

Đơn giản mà bạn :

\(\cos^212+\cot60+\sin^212=\left(\cos^212+\sin^212\right)+\frac{1}{\tan60}=1 +\frac{\sqrt{3}}{3}=\frac{3+\sqrt{3}}{3}\)

8 tháng 8 2020

\(A=\frac{\cos57}{\cos57}+\frac{\cot58}{\cot58}-2\left(1+1\right)\)\()\)

=1+1-4

=-2

8 tháng 8 2018

b) \(sin^23^o+sin^215^o+sin^275^o+sin^287^o\)

\(=\left(sin^23^o+cos^23^o\right)+\left(sin^215^o+cos^215^o\right)\)

\(=1+1=2\)

8 tháng 8 2018

a) \(cos^212^o+cos^278^o+cos^21^o+cos^289^o\)

\(=\left(sin^278^o+cos^278^o\right)+\left(sin^289^o+cos^289^o\right)\)

\(=1+1=2\)

30 tháng 11 2019

\(\sin^4\alpha+\cos^4\alpha=\left(\sin^2\alpha+\cos^2\alpha\right)^2-2\sin^2\alpha.\cos^2\alpha=1-2.\frac{1}{4^2}=\frac{7}{8}\)

10 tháng 7 2016

áp dụng  sin2a=cos2(90-a)

và sin2a+cos2a=1

10 tháng 7 2016

áp dụng cả a,b đó,,,,, coi

8 tháng 6 2018

Sửa đề

\(A=cos^212+cos^223+cos^234+cos^245+cos^256+cos^267+\)

\(=\left(cos^212+cos^278\right)+\left(cos^223+cos^267\right)+\left(cos^234+cos^256\right)+cos^245\)

\(=\left(cos^212+sin^212\right)+\left(cos^223+sin^223\right)+\left(cos^234+sin^234\right)+cos^245\)

\(=1+1+1+\frac{\sqrt{2}}{2}=\frac{6+\sqrt{2}}{2}\)

10 tháng 8 2017

a) Ta có : sin\(^2\)12o=cos278o=> sin212o+sin278o=1.

tương tự => A=3

10 tháng 8 2017

b) tương tự câu (a) ta có: cos215o=sin275o ( do 15+75=90 nha bạn ) => cos215o+cos275o=1. Tương tự => B=0

27 tháng 8 2021

a/ \(A=\frac{cot^2a-cos^2a}{cot^2a}-\frac{sina.cosa}{cota}\)

\(=\frac{\frac{cos^2a}{sin^2a}-cos^2a}{\frac{cos^2a}{sin^2a}}-\frac{sina.cosa}{\frac{cosa}{sina}}\)

\(=\left(1-sin^2a\right)-sin^2a=1\)

27 tháng 8 2021

b/ \(B=\left(cosa-sina\right)^2+\left(cosa+sina\right)^2+cos^4a-sin^4a-2cos^2a\)

\(=cos^2a-2cosa.sina+sin^2a+cos^2a+2cosa.sina+sin^2a+\left(cos^2a+sin^2a\right)\left(cos^2a-sin^2a\right)-2cos^2a\)

\(=2+\left(cos^2a-sin^2a\right)-2cos^2a\)

\(=2-sin^2a-cos^2a=2-1=1\)