
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a, Đặt \(x^2-4x+8=a\left(a>0\right)\)
\(\Rightarrow a-2=\frac{21}{a+2}\)
\(\Leftrightarrow a^2-4=21\Rightarrow a^2=25\Rightarrow a=5\)
Thay vào là ra
b) ĐK: \(y\ne1\)
bpt <=> \(\frac{4\left(1-y\right)}{1-y^3}+\frac{1+y+y^2}{1-y^3}+\frac{2y^2-5}{1-y^3}\le0\)
<=> \(\frac{3y^2-3y}{1-y^3}\le0\)
\(\Leftrightarrow\frac{y\left(y-1\right)}{\left(y-1\right)\left(y^2+y+1\right)}\ge0\)
\(\Leftrightarrow\frac{y}{y^2+y+1}\ge0\)
vì \(y^2+y+1=\left(y+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
nên bpt <=> \(y\ge0\)

a)VP lẻ => VT lẻ =>x2-y2=2k+1 (k\(\in\)Z) (số lẻ)
\(\Rightarrow10y+9=\left(2k+1\right)^2\Rightarrow y=\frac{2\left(k+2\right)\left(k-1\right)}{5}\in Z^+\)
\(\Rightarrow\orbr{\begin{cases}\left(k+2\right)⋮5\Rightarrow k=5t-2\Rightarrow y=2t\left(5t-3\right)\left(1\right)\\\left(k-1\right)⋮5\Rightarrow k=5t+1\Rightarrow y=2t\left(5t+3\right)\left(2\right)\end{cases}}\left(t\in Z^+\right)\)
- Xét \(\left(1\right)\Rightarrow x^2=\left(10t^2-6t\right)^2+10t-3\)
Mà \(\hept{\begin{cases}\left(10t^2-6t\right)^2< \left(10t^2-6t\right)^2+10t-3< \left(10t^2-6t+1\right)^2\left(\text{khi}\text{ t }\ge1\right)\\\left(10t^2-6t-1\right)^2< \left(10t^2-6t\right)^2+10t-3< \left(10t^2-6t\right)^2\left(\text{khi t}\le-1\right)\\\left(10t^2-6t\right)^2+10t-3=-3< 0\left(\text{khi t}=0\right)\end{cases}}\)
Suy ra pt vô nghiệm
- Xét (2)\(\Rightarrow x^2=\left(10t^2+6t\right)^2+10t+3\)
Mà \(\left(10t^2+6t\right)^2< \left(10t^2+6t\right)^2+10t+3< \left(10t^2+6t+1\right)^2\left(\text{khi t}\ge1\right)\) (*)
\(\left(10t^2+6t-1\right)^2< \left(10t^2+6t\right)^2+10t+3< \left(10t^2+6t\right)^2\left(\text{khi t}< -1\right)\)(*)
\(\left(10t^2+6t\right)^2+10t+3=3^2\left(\text{khi t}=-1\right)\)(*)
\(1^2< \left(10t^2+6t\right)^2+10t+3=3< 2^2\left(\text{khi t}=0\right)\)(*)
Suy ra \(t=-1;y=4;x=\pm3\) (thỏa mãn)
Vậy....
P/s:Ngoặc nhọn 4 dòng có dấu (*) vào
Xin lỗi bạn mình chưa học lớp 8
Trông đề bài khó quá
Mình nghiệp dư lắm

a,\(=\left(\frac{3}{5}x+\frac{2}{7}y\right)^2=\left(\frac{3}{5}.5+\frac{2}{7}.\left(-7\right)\right)^2=0\)
\(b,=\left(\frac{5}{4}u^2v+\frac{2}{25}v^2\right)^2=\left(\frac{5}{4}.\left(\frac{2}{5}\right)^2.5+\frac{2}{25}.5^2\right)^2=3^2=9\)